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Abstract

The Strategic Petrol eum Reserve (SPR) cavern fluid velocity nodel for
natural convection uses the Mddified Local Simlarity (MS) nmethod to
anal yze the boundary layer behavior. In order to use the M.S approach,
boundary | ayer velocity and tenperature profiles are calculated in terns of
local simlarity variables based on the natural convection equations.
Modi fications were nade to the local simlarity equations enabling con-
sideration of turbulent flow and nmixed convection conditions. The details
of these changes are addressed in thisreport.

For turbulent flow, an existing nodel was nodified for application to
local simlarity conditions. For mixed convection, the natural convection
local simlarity equation set was nodified to meet the appropriate boundary
conditions. This nodel is the first application of the natural convection
local simlarity equation set to nmixed convection. In addition, the tra-
ditional shooting nmethod used to solve the local simlarity equations was
unreliable so an alternate method was devel oped

The local simlarity nodels developed in this report for turbulent flow
and mixed convection are conpared to the avail able experinental data. The
nodel s performreasonably well when conpared to the limted data, and the
nureri cal method was found to be much nore reliable and robust than the
traditional nethod. Wth these nodifications to the local simlarity
approach, the full range of conditions needed for the M.S nethod in the SPR
velocity nodel can be calcul ated
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[. Introduction

The Strategic Petrol eum Reserve (SPR) cavern fluid velocity nodel for
natural convection devel oped by Wbb (1988a) uses the Mdified Loca
Simlarity (MS) nethod to analyze the boundary |ayer behavior. The MS
nethod is based on the traditional local simlarity nethodology wth
nodi fications to ensure conservation of energy as the boundary | ayer
devel ops (Webb (1988b)). In order to use the MS approach in the cavern
fluid velocity nodel, boundary |ayer velocity and tenperature profiles nust
be calculated in terns of simlarity variables considering the conditions
encountered in SPR caverns.

Typical features of an SPR cavern are depicted in Figure 1 with refer-
ence to Bryan Mund Cavern 105. The approxi mate cavern dinmensions are a
radi us of 100-150 feet and an overall height of 2000 feet; the top of the
cavern is about 2000 feet underground in a large salt dome. Mst of the
cavern is filled with crude oil, which overlies a shallow brine |ayer. At
the top of the cavern, the tenperature of the salt is about 120°F. The
geothernmal tenperature gradient is approxinmately .014°F/ft of depth, and
the salt at the bottom of the cavern is 30°F hotter than that at the top
or about 150°F. The oil is introduced to the cavern piping system at
approxi mately 70°F.

The fluid velocity in the caverns is caused by the geothernal tenpera-
ture gradient in the surrounding salt and the large fluids-to-salt tenpera-
ture difference. Since the salt is hotter than the oil or brine, heat is
added to the fluids near the walls causing the fluid to rise due to buoy-
ancy. Wth this upward flow near the walls, the flowis dowward in the
center of the cavern, and the center fluid tenperature is stratified with
the higher tenperature fluid on top. This natural convection flow pattern
will continue for 30 years or nore due to the |large extent of the salt
region. Highly turbulent conditions with Rayleigh nunmbers up to 1016 are
expected due to the large height of the caverns (Wbb (1988a)).

For application to SPR caverns, boundary |ayer conditions which nust be
consi dered for the M.S net hod include | am nar and turbulent flow environ-
mental fluid tenperature stratification, and mxed convection with opposing
boundary |ayer and center region velocities. Lamnar flow and environ-
nmental fluid tenperature stratification can be handled directly by the
local simlarity approach if the simlarity parameters can be defined as
done by the M.S nethod. However, local simlarity has not generally been
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Figure 1. Typical features of an SPR cavern



extended to turbulent conditions. The only application of the approach to
turbul ent flow has been performed by Noto and Matsunoto (1975). For nixed
convection conditions, local simlarity based on the natural convection
equations has never been done since the traditional formis inconpatible
Wwith the applicable boundary conditions.

In order to apply the local simlarity approach to SPR caverns, nodi-
fications have been nade to the appropriate equation set to accommodate
turbul ence and nixed convection conditions. This report addresses the
changes that were made to calculate the necessary boundary |ayer profiles.
In addition, the traditional nunerical nethod used to solve the |oca
simlarity equations was found to be unreliable for the nodified equation
set and another approach was found as detailed in this report. Details of
the fluid velocity nodel and of the M.S approach are given el sewhere (Webb
(1988a,1988b)) and are not discussed in this report.

Local Simlarity Approach

In order to understand the changes described in this report, the tra-
ditional local simlarity nethod will be presented and discussed. The
local simlarity nethod is the basis of the M.S approach devel oped by Webb
(1988b) and used in the SPR velocity nodel (Webb (1988a)). To illustrate
the local simlarity approach, the sinilarity equations for natural convec-
tion along a vertical surface will be derived, and the local simlarity
assunptions wll be inposed.

Consi der a boundary layer as depicted in Figure 2. The steady-state
natural convection boundary |ayer mass, monentum and energy conservation
equations for a constant tenperature environment are (Jaluria (1980))

mass

= =0 (1)

u%;+v—-g,3(r-'rf(x))+u——‘2‘ 2)
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Figure 2. Boundary |ayer coordinates.



ener gy
(3)

where the Boussinesq approxi mations for natural convection have been used

The natural convection boundary |ayer conservation equations for nass,
momentum and energy given above are coupled partial differential equations
for the boundary |ayer behavior and are time-consumng to solve. However,
for appropriate boundary conditions, these partial differential equations
(PDEs) can be transformed into ordinary differential equations (ODES)
through the local simlarity approach. The resulting ODEs are nuch easier
to solve than the original PDEs.

According to Sparrow and Gregg (1958) and Yang (1960), sinilarity only
exists for two specific distributions of the tenperature difference between
the wall and the fluid: the power-law and the exponential distributions.

As eval uated by Cebhart and Ml | endorf (1969) and by Webb (1988b), the
exponential distribution has significant non-physical behavior and is
therefore not often used. The nore useful power-law distribution is
employed in the follow ng exanple

For the power-law simlarity distribution, the wall-to-fluid
tenperature difference must be of the form

AT(x) = T _(x) - Te(x) = N x" (4)

where two common val ues of n are 0.0 for uniformwall tenperature and 0.2
for uniformwall heat flux.

If the fluid tenperature is nonuniform the variation nust be of the
form

JN n J
To(x) - T = == X =7 AT(X) (5)
where the reference tenperature, T,, is the fluid tenperature at x-0. If

the fluid tenperature is constant, J is equal to O.



For a vertical flat plate in a uniform tenmperature fluid (J-Q),
application of the simlarity approach with the power-Ilaw distribution
reduces the boundary | ayer PDEs to the following set of equations:

2 1
[ [ ) ’ Iaf 'laf
f + (n#3) f £ - 2 (ntl) f + § = 4X [fé;-f ax (6)
o" ’ . lag 'a_f
st (m3)f 6 -4nf’ B -4 [fa_x'”ax] (7)

where the stream function and other variables are

er 1/4
lﬁ -4 T 1% f(X,')) (8)
we 28 L2y 5 172 4 (9
ay X X

[Gr ]l/&
I A

X 4 (10)
T(n) - Tg(0)
§(n) = T\,&X) ~ Tf(X) (1L
3
g A X (TG0 - Te(x)
6r_ = : (12)

v

’

denotes d4/dn.

The above equations are subject to the follow ng boundary conditions

f(0) = 0. (equivalent to zero mass flow at the wall) (13)
f'(0) = 0. (equivalent to u = 0. at the wall) (14)
f'(w) = 0. (equivalent to u = 0. at ) (15)
6(0) = 1. (equivalent to T(0) = Tw) (16)
f (o) = 0. (equivalent to T(w) = Tf) (17)



The preceding simlarity equations for the natural convection boundary

layer are still partial differential equations due to the RHS of both
equations. In order to greatly sinplify the equation set, the RHS of each
equation is often assumed to be equal to zero. In this case, f and # are

only a function of 5, and the equations becone

I ’2
o+ (@3 f " -2 (n+Hl) f +4 =0 (18)

+(n+3)f9'-4nf10-0 (19)

9
Pr

This assunption will be approximated for small x values or if the partia
derivatives of f, f', and 4 are small with respect to x. This procedure is
referred to as the local simlarity approach since the resulting equations
are independent of x and are therefore local. Under this assunption, the
natural convection equations reduce to two ODEs instead of the three PDEs
given earlier.

The local simlarity technique was first applied to natural convection
by Pohl hausen as a supplenent to the experinents of Schm dt and Beckmann
(1930) who gave approximate solutions to the equations. Nunerical solution
of the equations was first provided by Ostrach (1953) with the use of a
digital computer. Since then, local simlarity solutions have emerged as
an inmportant analytical tool for analyzing natural convection under certain
conditions. Exanples of situations which are often analyzed by the loca
simlarity approach include vertical surfaces with constant tenperature or
constant heat flux wall conditions, and buoyant jets and plumes (Jaluria
(1980)).

The traditional simlarity approach, while being powerful, has limted
applicability due to the restrictions on the forms of the tenperature
vari ation. In the above exanple, the solution is only applicable if the
tenperature difference is of the power-law form The Mdified Local
Simlarity (M.S) approach devel oped by Webb (1988b) has significantly
i nproved the useful ness of the simlarity approach by providing a reason-
able definition of the simlarity parameters for non-simlar boundary
condi tions.



The local simlarity approach (and M.S extension) is an approxinate
technique that is extrenmely attractive since only two coupl ed ODEs have to
be solved for the boundary layer solution. In addition, the solution at
any x location is independent of the solution at other x locations. A
problem with the method, however, is that the uncertainty of the approach
in unknown. This concern led to the devel opnent of the local nonsimlarity
approach (Sparrow, et al. (1970,1971) and M nkowycz and Sparrow (1974)) in
which the partial derivatives are retained. Additional differential equa-
tions are used to evaluate the partial derivatives in the basic conserva-
tion equations while keeping the equations independent of solutions at
other x locations like the local simlarity nmethod. By keeping the partia
derivatives, the error is much smaller in the local nonsimlarity approach
than for the local similarity method

While the local simlarity nethod is not as accurate as the |oca
nonsimilarity nethod, the local sinmlarity method has a feature that is
critical for application to SPRin that the results can be easily
t abul at ed. The boundary layer results are just a function of the fluid
properties and the sinilarity paraneters n and J. Thus, for a known fluid
if the local values of n and J can be determ ned, the boundary |ayer
results can be evaluated. Evaluation of n and J is done in the present
case through the M.S nmethod devel oped by Webb (1988b). In contrast, the
local nonsimilarity approach is dependent on the fluid properties, the
simlarity paraneters n and J, and the location x. Tabulation of the
results for the local nonsinmlarity approach is much nore conplex than for
the local simlarity method due to the additional x parameter. The
devel opment of the M.S approach, which inposes conservation of energy as
the boundary |ayer develops, has also significantly reduced the error of
the local sinilarity procedure as shown by Wbb (1988b). In addition, no
net hod conparable to the M.S approach is available for the |ocal nonsimi-
larity nethod to evaluate the n and J values for nonsimlar boundary con-
ditions. Therefore, in the present application for SPR caverns, the loca
simlarity approach as nodified by the M.S method is enployed



[I. Nunerical Method

As discussed in the Introduction, the local similarity approach reduces
the natural convection boundary |ayer conservation equations froma set of
three coupled partial differential equations (PDEs) to two coupl ed ordinary
differential equations (ODES), or

re e e r2
f +(m3) f f -2 (1) f +6-0 (18)

0 ’

Pr + (n+3) f 19" - Anf' 6 =0 (19)

which are considerably easier to solve than the PDE set.

The standard procedure to solve this set of coupled ODEs is to break
the equation set down into five first order CDES. The shooting nmethod is
then enployed to sinultaneously solve the ODE equation set using, for exam
ple, the Runge-Kutta ODE equation solver (Jaluria (1980)). The val ues of
f"(0) and 4'(0) are guessed and iterated upon until the boundary conditions
f'(m and 8(«) are met within the desired tolerances. The iteration pro-
cess is schematically depicted in Figure 3 for the velocity profile. The
process continues until the solution hits the target at .

Application of the shooting nethod to solve the above equations |eads
to a number of problens. The end point, ne, has to be specified. Conmon
practice is to initially set the end point to a snmall value. Once the
shooting nethod converges for this end point, the value is increased. If
the results do not change significantly with a larger end point, the pro-
cess is assumed to have converged. However, if the results are substan-
tially different, further increase in neo is required. Convergence is
typically judged fromthe changes in the guessed val ues of £°(0) and 6’ (0)
with an increase in ne.

A nunber of problens can occur when the above procedure is used
First, the sinultaneous nunerical integration of five ODEs can "blow up" if
the initial guesses are significantly different than the correct answers.
In this case, the initial guesses have to be changed and/or the val ue of
the end point, ne, decreased. Therefore, it is wise to start out with a
known solution and proceed fromthere. For exanple, if the |amnar
velocity profile for a Prandt!l nunber of 80 were needed, the results for a
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Prandt! nunber of 100 could be used as a starting guess. Laminar |oca
simlarity results for a variety of Prandtl nunbers for constant heat fl ux
and constant wall tenperature conditions are tabulated by a nunber of
authors such as Jaluria (1980) and Gebhart (1985).

Second, even if the initial guesses are reasonably close to the correct
answers, the change in the values of £7(0) and 6'(0) for the next iteration
needs to be determined. An excellent procedure for this problemis given
by Nacht sheimand Swigert (1965) who use a |east squares procedure to mni-
mze the error in order to deternmine the change in £'(0) and 6'(0). For
| ami nar natural convection conditions, convergence is usually rapid for
this approach with reasonable initial guesses.

Third, the need for asynptotic values of f' and 8 at ne | eads to the
two additional restrictions on the solution of £'(o) = §' (o) = 0. which are
needed to obtain a unique solution to the problem These restrictions have
been incorporated into the schene for choosing the updated values of f"(0)
and 6’'(0) by Nachtsheimand Swigert (1965). Their method also provides an
alternate way of choosing ne through their definition of the error term
Thi s approach is vastly superior to monitoring changes in f"(0) and 6°(0)
as discussed earlier.

Finally, when the value of the end point is large, the shooting nethod
can be susceptible to small errors which can build up through the multiple
integration processes, and the whole procedure can diverge. Thus, deternmi-
nation of an appropriate end value can be difficult. Wile this problem
can often be alleviated by a nmore accurate ODE solver, this is not always
the case. Laminar conditions do not usually encounter this problem  How
ever, turbulent calculations often result in very large values of the end
point, and the shooting nethod often fails as encountered in this study and
in the work of Gominho and Wiite (1984) as discussed by Wite (1988).

In order to overcone the problens with the shooting nethod, especially
for turbulent flow and m xed convection conditions, the Box finite differ-
ence nethod devel oped by Keller (1971) has been enployed in this study.
This nethod is most often used to solve PDEs, especially for boundary |ayer
cal cul ations, and has been extensively tested by Cebeci and Smith (1974)
and Cebeci and Bradshaw (1977,1984). The use of a finite difference ap-
proach instead of the shooting nethod has been suggested in Bejan (1984) in
the discussion of the shooting method for natural convection, although the
i dea was not developed further. Blottner (1975) and Keller and Cebec

11



(1972) nention the procedure for solution of the sinmlarity equations for
forced convection but not for natural convection.

The Box nethod consists of witing the higher order equations as a set
of first order equations simlar to the shooting nmethod procedure. The
equations are then witten in terns of central differences at mspecified
mesh point |ocations. After linearization of the equations, if needed, a
linear system of ml equations with ml| unknowns must be solved. The
di stingui shing feature of the Box nmethod as opposed to other nunerical
nethods is the formof the central difference which readily allows for
nonuni form nesh point spacing.

As an exanple, consider the first order equation
f' =g (20)

where g is a known function. For the nesh points n and n+l, the Box mnethod
representation is sinply

fn+1 ) fn ) gn+1/2 ) gn + gn+1

An 2 21

Thus, the expression is centered about the mddle of the "box" between the
two nmesh points instead of being centered at a mesh point. By using this
approach, variable mesh point spacing is easily acconplished.

The Box nethod has been used in the present investigation to solve the
local sinilarity boundary |ayer equations. The ODE equation set is broken
down into five first order CDES, and the finite difference approximations
are done using the Box method. Newton's method is enployed to solve the
equations for the correction terns, and the resulting matrix is solved by a
matrix inversion routine. The variables are updated by the cal cul at ed
correction terns and the procedure continues until convergence. Keller
(1978) outlines the above approach for PDEs.

The Box method automatically inposes the five boundary conditions
listed earlier. Thus, when the nethod converges for a givenset of condi-
tions, the boundary conditions are automatically satisfied. The only prob-
lemis deternination of the end point, a problemthat is also faced with
the shooting method.

12



In the present approach, the end point is reached when the error for
the calculated profile is acceptably low.  The error definition is that
given by Nachtsheim and Swigert (1965) which is

, o2 2 2 2
E = (f (=) - fw) +f " (o) + 0 (o) + 6 (). (22)

However, since the first and third terns are automatically satisfied by the
Box method (note that they are not automatically satisfied in the shooting
met hod), the error term reduces to the square of the slopes at %, Of

' 02 2
E- f (©) + 0 (). (23)

The above error definition is used to determne the |ocation of the end
point, nw; the end point is increased until the error is acceptably |ow
For laminar natural convection calculations, the error is deened acceptable
when the value is less than 1. x 1070, For turbulent and mi xed convection
conditions, errors less than 1. x 1071 were desired but often only val ues
of 1. x 1078 were obtainable due to the sensitivity of the nodel to certain
parameters and the large end points encountered. However, when conbined
with the conservation checks discussed next, the results are satisfactory.

As an additional check on the results, conservation of energy and
momentum is evaluated. From Webb (1988b), assuming £''(«) = O, the inte-
grated natural convection local simlarity boundary |ayer equations are

Moment um
N N
12 L)
(5+3n) | £ dn =1} 6 an - fW (24)
0 0
Ener gy
Neo ' Neo
' €W 4
(5n + 3) f o dng = - T J £ an. (25)
I I
0 0
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The use of the above integrated conservation equations can point out
programming errors for either the shooting nethod or the Box approach. For
exanple, if nomentumis not conserved even for |arge values of the end
point or for conditions such as lamnar flow where the answers are known,
the programmed equations are probably incorrect. |If convergence of £7(0)
were used, programming errors may not be found. While this criterion has
sone problens of its own, such as accurate evaluation of the integrals,
convergence has typically been to within 1.0% or |ess including turbul ent
flow conditions.

An exanple using this criterion is a very high Rayleigh nunmber (1016)
turbulent flow case enploying the standard shooting nethod. The end point
was assunmed to have been reached when the f"(0) and 6'(0) val ues did not
change by nore than 1% for a significant increase in neo. However, applica-
tion of the conservation equations reveal ed that conservation of energy was
in error by a factor of 5 and that, in fact, the end point had not been
reached. Further use of the shooting method for larger end points was not
practical since the shooting nethod "blew up" or diverged. The above Box
met hod was subsequently devel oped and successfully applied to the problem

In contrast to the shooting nethod, the Box method procedure is
extrenely stable, even when the initial guesses are poor. Turbulence also
poses no problem to the nethod, and very large values of the end point are
handled without difficulty. On the average, about 50 nesh points are used
in the Box scheme to calcul ate the boundary |ayer profile conpared with
about 100-200 intervals for the shooting nethod with a fifth order Runge-
Kutta nethod. Conputer times for one iteration with each technique are
conparable.  However, the number of iterations required with the Box method
are much snmaller than for the shooting nethod since the zero velocity and
tenperature boundary conditions are automatically satisfied and | arger
changes in the end point values can be used, Differences between the
results of the two methods are indistinguishable on a plot when the
shooting method converged; the values of f"(0) and 4'(0) generally differ
by less than 0.1 percent. Some typical results for |anminar flow are shown
in Table 1 along with tabulated results from Gebhart (1985). Al the
results in this table for the Box method had errors less than 1. x 10-10,

The above integrated conservation equations apply to |lam nar and turbu-
l ent natural convection conditions but not to mxed convection flows. The
appropriate integrated equations can only be devel oped after the |oca
simlarity equation nodifications are conpleted. The integrated equations
are presented in Section IV.
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Table 1

Comparison of Results of Shooting Method and Box Method
for Laminar Flow Simlarity Profiles

!

Pr £ (0) £ (max) - 4 (0)
Shoot i ng* Box Shoot i ng* Box Shoot i ng* Box

Uniform Wall Tenperature (UM)

0.72 0. 6760 0.6761 0. 2762 0. 2762 0. 5046 0. 5048
1.0 0. 6422 0.6423 0. 2513 0. 2515 0.5671 0.5673
5.0 0. 4818 0. 4818 0.1484  0.1485 0. 9540 0. 9546
10. 0.4192 0.4192 0. 1149 0.1151 1. 1693 1.1702
100. 0. 2517 0. 2517 0. 0442 0. 0443 2.1913 2.1946

Uni form Heat Flux (UHF)

0.72 0. 6389 0. 6394 0.2514  0.2520 0. 5756 0. 5759
1.0 0. 6069 0.6071 0.2288  0.2292 0. 6453 0. 6456
5.0 0. 4543 0. 4545 0.1345 0. 1347 1. 0759 1.0768
10. 0. 3951 0.3951 0.1042 0.1043 1. 3164 1. 3173
100. 0. 2367 0. 2367 0. 040 0. 0400 2. 4584 2.4616

* - from Gebhart (1985)
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At the time of the devel opment of the Box finite difference nethod dis-
cussed above, no other application of the finite difference approach to the
local sinmilarity natural convection equations was known. During the final
preparation of this report, a finite difference approach for solving the
local simlarity equations was published by Henkes and Hoogendoorn (1989a).
Their reason for developing an alternative nethod was the sanme as en-
countered in the present investigation and that of Gomi nho and Wite
(1984); the traditional shooting method was unreliable. However, their
numeri cal approach assumes constant mesh point spacing. Wile this assump-
tion is adequate for laminar flow conditions, uniform spacing is not appro-
priate for turbulent conditions. Although the approach given in the pres-
ent report and that of Henkes and Hoogendoorn (1989a) are rel ated since
they are both finite difference methods, the present schene is the nore
versatile of the two nethods since it allows for variable nmesh point
spacing, a nust for turbulent flow

16



[11. Turbul ence

Data and nodels for turbulent natural convection are |imted conpared
to forced convection conditions. Only a few investigations have obtained
turbul ent natural convection nean (average) velocity and tenperature pro-
file data for the sinmple configuration of a vertical flat plate. Mst of
the natural convection turbul ence nodels are based on forced convection
applications with little or no nodification. Mich nore experinmental and
anal ytical work renmains to be done for turbulent natural convection condi-
tions.

For the present evaluation, only turbulent natural convection data and
nodel s applicable to vertical flat plates will be considered since this
configuration is the nost often studied. Note, however, that turbulent
natural convection data in enclosures have been briefly discussed by Wbb
(1988a) in his report on the SPR velocity nodel

The state of the fluid in natural convection is generally referred to
interns of a Gashof or Rayleigh nunber. Two variations exi st dependi ng
on the type of experiment or analysis performed. For the constant wal
tenperature case, the normal G ashof and Rayleigh nunbers are enpl oyed
which are

3
or, = M (26)
vV
Rax= erPr (27)

where AT is the tenperature difference between the wall and the fluid. For
the constant heat flux case, however, an alternate definition is used. The
two forms are differentiated by a superscript * on the constant heat flux
value, and the definitions are

* g Bx
er = 2 - erNuX (28)
k v
Ra’ = Gr  Pr = Ra Nu . (29)
X X X b.4

The two forms are simply related through the local Nusselt number.

17



Some other parameters are used in data presentations. The velocity is
often normalized with respect to u*, which is a velocity characteristic of
natural convection. Two definitions are comonly used which differ by a
factor of two. In this report, the following definition is used

0 =2 B x a1/ (30)

This definition is particularly convenient since the actual velocity
divided by u* is exactly equal to the velocity simlarity variable f'

' X u u
f = u = - . (31)
2 v er1/2 2 (g gxamy? W

The other definition of uw*is sinply without the factor of 2.

Transition between lam nar and turbulent flow is generally considered
to be at a Grashof nunber of approximately 10° for a vertical flat plate.
The exact location of the end of lamnar flow and the start of turbulent
conditions is difficult to determine and depends on paraneters other than
just the Grashof nunber (Jaluria and Gebhart (1974)). However, a val ue of
108 for the Grashof number for the start of turbulence is often used. For
SPR caverns, the Grashof nunber is expected to be considerably higher
(~1014) (\Webb (1988a)), so the boundary |layer will be highly turbulent.

A. Natural Convection Data

Early investigations into turbulent natural convection focused pri-
marily on the influence of turbulence on the mean fluid velocity and tem
perature profiles. Later on, additional turbulence quantities have been
neasured during the studies such as the fluctuation of the velocities and
the tenperature. The presentation given here will show nostly nean fluid
vel ocity and tenperature profiles due to the ultimate decision to use a
m Xxi ng length turbul ence nodel as discussed later on in this report.

The data presentations have been given in a variety of coordinates.
Sone investigators use physical quantities such as velocity and distance,
but nost data are reported in transfornmed variables sinmilar tof' and 5 in
the local simlarity approach. The definition of the coordinates used in
the data presentations will be included in each figure as appropriate.

18



The first neasurenents of turbulent nean velocity and tenperature
profiles were nade by Giffiths and Davis (1922) in air. These data were
the basis of the turbulent velocity and tenperature profiles shapes assuned
inthe integral analysis of turbulent natural convection flow perfornmed by
Eckert and Jackson (1951). However, Eckert and Jackson (1951) were not
able to reproduce the magnitude of the measured vel ocities and concl uded
that the measurenents were inaccurate.

Cheesewright (1968) was the next investigator to neasure nean velocity
and tenperature profiles in turbulent flow. Data for air on a constant
tenmperature vertical plate were obtained for a variety of different Gashof
nunbers and are shown in Figures 4 and 5. A conparison of the data with
those of Giffiths and Davis (1922) shows that the two sets of data are in
reasonabl e agreenent. Poor agreenent between the assuned profiles used by
Eckert and Jackson (1951) and the data was noted. Even use of the experi-
nental data for the maxi mum velocity and boundary | ayer thickness did not
bring the profiles into reasonable agreement with the data. Thus, the
turbul ent profiles of Eckert and Jackson (1951) do not fit the data.

For many years, the Cheesewight data were the prinary target of the
devel opers of turbulence nodels for natural convection as will be seen in
the next section. However, Hoogendoorn and Euser (1978) noted sone heat
bal ance inconsistencies in the data that led themto believe that the
velocity values were too small. They obtained some linted data which
indicate that the velocity data of Cheesewight are |ow as shown in Figure
6. This figure also shows predictions nmade by the nodel of Mason and Seban
(1974) which is discussed briefly later. In response, Cheesewight and
lerokiopitis (1982) investigated the velocity data problens by using a
di fferent measurenment techni que (Laser Doppler Anenoneter (LDA) versus hot-
wire anenoneter) and provided new velocity data that are indeed higher than
the earlier information. The new data of Cheesewight and lerokiopitis are
given in Figure 7 with a conparison to the earlier Cheesewight (1968)
data. Note that this figure is adapted from To and Hunphrey (1986). These
data are not contained in the acknow edged reference but are probably from
a nore detailed report by Cheesewight and lerokiopitis. Additional data
are given in Figure 8 from Cheesewight and lerokiopitis (1982).

Gt her investigations of turbulent nmean profiles perforned about the
time of the first Cheesewight study were performed by Warner and Arpaci
(1968) and by Lock and Trotter (1968). \Warner and Arpaci (1968) neasured
temperature profiles and heat transfer coefficients; velocity data were not
obtained. Lock and Trotter (1968) present nean velocity and tenperature
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Figure 6.

o4l Mason
Cheesewright

@ Our data

Ra.7110
Re: 6610

a3

02}

01

of 02 03 04 05 06 o7 06 00 10

Hoogendoorn and Euser (1978) data conpared to Mason (1974)
predictions and Cheesewight (1968) data.

(Hoogendoorn and Euser (1978))

velocity units = 2f°'

di stance units = (y/x) Gro.1

(Same coordinates as Cheesewight (1968) in Figure 4)
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profiles as well as tenperature fluctuation data for water on a constant
heat flux vertical plate. Some of the mean velocity data are shown in
Figure 9. As indicated in the paper, the boundary layer is not conpletely
turbulent even at the highest value of Gashof nunber reported. The
velocity data seem high, since the peak f' value for the data is 0.32
compared to a peak f' value for lamnar flow of about 0.11 for water with a
Prandt| number of 10.25 (see Table 1). These data are discussed in nore
detail in Section III.C.

Shortly thereafter, Viiet and Liu (1969) published nmean velocity and
temperature data for water on a vertical plate with constant heat flux
including Nusselt nunmber and velocity fluctuation data. The velocity and
temperature profile data, which are shown in Figure 10, have shapes sinmilar
to the air data of Cheesewight (1968). Fujii, et al. (1970) neasured
Nusselt nunbers and nean and fluctuating tenperatures for a vertical
cylinder in water, spindle oil, and Mbiltherm oil. Unfortunately, no
velocity data were obtained. However, these tenperature data, which are
given in Figure 11, are valuable due to the wide range of Prandtl nunbers
involved. Kutateladze, et al. (1972) reported some mean and fluctuating
velocity data for ethyl alcohol as the working fluid as shown in Figure 12.

Mre recently, Myamto, et al. (1982) published nean velocity data as
wel | as other turbul ence paraneters for air on a constant heat flux verti-
cal plate. The nean velocity profile data are shown in Figure 13a. To and
Hunphrey (1986) cal cul ated some turbulent Prandt! number information for
the Myanoto, et al. (1982) data which is shown in Figure 13b. Also shown
are turbulent Prandtl nunber predictions by To and Hunphrey (1986) using
their stress nodels.

Finally, Tsuji and Nagano (1988) present some nmean and fluctuating data
for air on an isothermal vertical plate. According to the authors, prob-
| ens have been noticed in nost of the other investigations due to environ-
mental fluid tenperature stratification. Tsuji and Nagano (1988) took care
to mininmze this effect in their experiments. Conparison of their mean
velocity and tenperature data with others is consistent with a smaller
anbient tenperature stratification. The nean velocity profile data given
in Figure 14a show a | arger boundary | ayer for Tsuji and Nagano than for
other investigators. Velocity data for a variety of G ashof nunmbers are
shown in Figure 14b. The mean tenperature profile data also indicate the
| arger boundary layer trend as shown in Figure l4c.
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mm/s

Figure 12. Kutateladze, et al. (1972) velocity data for ethyl alcohol.
1. Ra = 2.15x10%0; x = 275 nm AT = 11.8°C; T, = 29.2°C.
2. Ra = 4.83x1019; X = 363 mMm AT = 11.6°C; T, = 29.4°C.
--- Integral Theory for Pr = 13.2; x = 360 nm AT = 11.6°C.

(Kutatel adze, et al. (1972))
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B. Natural Convection Mbdels

Yang and Aung (1985) summarize a number of approaches to turbul ent
natural convection including eddy viscosity nodels, stress nobdels, |arge
eddy simulation, and the vortex nethod. Based on computer time restraints
in the present application, the only acceptable approach is the eddy vis-
cosity nmethod. From Appendix A, the applicable conservation equations for
an eddy viscosity turbul ence nodel are

nmass
du | dv
a—x+§= 0 (A-12)
X- monent um
du du a du
u5;+v-é§ = gﬂ(T'Tf(X))-'-_aTy[(y-’-yt @] (A-13)
ener gy
T aT a aT
ua—£+V'a—y - é—y' [(a+at) 5;1 (A-14)

where closure equations for v, and a, have to be defined.

A variety of eddy viscosity nodels for v, exist ranging fromthe sinple
wthe conplex. The various categories are generally referred was zero-
one-, and two-equation nodels. The nunber of equations in the category
designation is the nunber of turbul ent paraneter PDEs involved in the eddy
viscosity rmodel. Thus, in the zero-equation category, the eddy viscosity
is specified by an algebraic relationship, not by solution of PDEs in con-
junction with the conservation equations. Similarly, a two-equation node
uses two PDEs to define the eddy viscosity which are solved simultaneously
with the conservation equations

Model s for the eddy thermal diffusivity, a,, are generally expressed in
terms of a turbulent Prandt|l nunber, which is defined as

<

t
Prt = ; (32)
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in analogy with the nol ecular Prandt|l nunber

14
Pr = e (33)

Only a few nodels for the turbulent Prandtl nunber exist, and these
nodel s are of the zero-equation or algebraic type; the subject is reviewed
in detail by Reynolds (1975). The nobst notable nodel is that by Cebeci
(1973) which will be discussed later. However, in nany practical applica-
tions, a constant turbulent Prandtl nunber of 0.9 is sufficient, at |east
for forced flow situations.

The one- and two-equation eddy viscosity nodels are too conplicated for
use with the local simlarity approach since they require sinmultaneous sol -
ution of the boundary layer and turbul ent parameter PDEs. Therefore, in
the present study, a zero-equation eddy viscosity nodel will be used
Zero-equation eddy viscosity nobdel s have been successfully applied in
forced convection for years as exenplified by work summarized by Cebeci and
Smith (1974) and by Cebeci and Bradshaw (1977,1984). \Wile it is recog-
nized that one- and two-equation nodels provide results superior to zero-
equation approaches, the conputer timeand sinmilarity equation restraints
i mposed on SPR cal cul ations necessitate the use of a zero-equation nodel

The appropriate local simlarity formof the above conservation equa-
tions for a uniformfluid tenperature (J-O is

4 L ’ '2
1+ ;E f ) + (n#3) f f" - 2 (n+tl) f + 6 =0 (34)

1t

( (5; + =

!

'ﬁ%?) 6 ) + (n#3)f 8 -4 nf 8§ =0 (35)

whi ch reduce to the laminar formof the local simlarity equations given
earlier (equations (18) and (19)) for zero eddy viscosity. The different
eddy viscosity nodels are discussed next.
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1. Zero-Fauation Mdels

Two types of zero-equation nodels have been extensively used - the
original eddy viscosity formin which the variation of v, i s prescribed,
i.e., vy=f(y), and the Prandtl nixing length hypothesis which relates the
eddy viscosity to the absolute value of the local velocity gradient, or

2 Jdu
V.

c IIE . (36)

For the nmixing length case, the turbulent shear stress becones

G
-uv =y

t g“; B 2| %ul %;' (37)
Problens with mixing length eddy viscosity nodels exist since the node
predicts that the eddy viscosity is proportional to du/dy. Thus, at velo-
city maxinums or mninuns, the eddy viscosity is zero. In contrast, the
nore accurate one- and two- equation eddy viscosity nodels predict an in-
creasing eddy viscosity at the velocity maxi mumin natural convection as
shown by Henkes and Hoogendoorn (1989b) in Appendix B, although the turbu-
| ent shear stress is zero at the velocity maxi rumfor all eddy viscosity
models.  This shortconing of the nmixing | ength approach was al so recogni zed
by Prandtl in his original work according to Schlichting (1969)

The mixing length eddy viscosity problem has been investigated by Dosh
and G111 (1970,1971) for forced convection. Their refornulation of the
mxing length significantly inmproved the nodel predictions conpared to data
for forced convection in a duct with two different wall tenperatures. How
ever, this refornulation will not be used in the present investigation at
this time. This problemis discussed further in Appendix B

Four applications of a zero-equation eddy viscosity nodel have been
performed for natural convection. Cebeci and Khattab (1975) and Noto and
Mat sunot o (1975) used forced convection nodels without nodifications for
buoyancy effects. Yang and LlIoyd (1985) present a zero-equation nodel for
encl osures, while the Popov and Yan' kov (1985) approach is simlar to that
of Cebeci and Khattab (1975) and Noto and Matsumpbto (1975) in that existing
forced convection nodels are used. However, these |ast two nodel s have
explicit nodifications to account the effect of buoyancy. Each nodel is
di scussed in detail bel ow.

33



a. Cebeci and Khattab

Cebeci and Khattab (1975) and Khattab (1975) investigated use of the
Cebeci and Smith (1974) forced convection turbul ence nmixing | ength nodel
for natural convection conditions. Inner and outer regions are used in the
approach in accordance with the Cebeci and Smith (1974) nodel. The eddy
viscosity in the inner region is the sane as that used by Cebeci and Smith
(1974). In the outer region, the original nodel is in terms of the free
stream velocity. Wiile this definition is satisfactory for forced convec-
tion, application to free convection caused a change from an eddy viscosity
concept to a mixing length approach in the outer region. The equations
used by Cebeci and Khattab (1975) are

ve = 1| 52 (36)
1, = 0.4y (1 - exp(-y/A))  (inner region) (38)
1O = 0.075 6 (outer region) (39)
I = min(1,,1)) (40)
A = 26u(rw/p)'1/2 (41)
7 -2 (42)

, 8u
w 3Y | wal |

where Khattab (1975) defines 6, the boundary layer thickness, as the loca-
tion where f' = 0.01 and £ < 0.

The minimum mixing length fromboth regions is used. For the present
set of equations, this operation neans that the eddy viscosity will in-
crease fromzero at the wall to a naxi num val ue dependent on the boundary
| ayer thickness, 6. The eddy viscosity will remain constant further out in
the boundary layer. This behavior is consistent with forced convection
experimental data as shown in Figure 15.

For forced convection, the boundary layer thickness, 6, is typically
calcul ated as the location where the boundary |ayer velocity is within 0.5%
of the free stream val ue (Cebeci and Bradshaw (1984)). However, in natural
convection, the free stream velocity is zero, so Khattab (1975) used the
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Figure 15. Distribution of mxing length in forced convection (Cebeci and
Bradshaw) (1977)).
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alternate definition given above. A ratio of the velocity at the edge of
the boundary layer to the peak value may be nore appropriate due to the
variation in peak f' values as given earlier in Table 1.

The turbul ent Prandtl number used by Cebeci and Khattab (1975) is based
on the nodel of Cebeci (1973). However, when a constant turbulent Prandt
number of 0.9 is used, very little difference was noted. A variable turbu-
lent Prandt|l nunber is only inportant for |ow Prandtl nunber fluids accord-
ing to Cebeci and Khattab (1975). The turbulent Prandtl nunmber equations
based on the Cebeci (1973) nodel as given by Cebeci and Smth (1974) are

Pr - Yt _ 0.4 (1 - exp(-y/A))

Te T e, 0.44 (1 - exp(-y/B)) (43)
B =B u (rw/p)'l/z’ pri/? (44)
0 -l

B = i_z| Ci (loglOPr) (45)
C, = 34.96, 28.79, 33.95, 6.33, -1.186 (i-l to 5) (46)

The results presented by Cebeci and Khattab (1975) are based on sol u-
tion of the PDE equation set for natural convection with the above turbu-
| ence nodel. The equations were integrated up the wall fromthe | eading
edge to determine the local velocity and tenperature profiles.

Figure 16 conpares the turbulent velocity profile predictions by
Khattab (1975) with turbulent data for air (Cheesewight (1968)) and for
water (Miet and Liu (1969)). Reasonable agreenent between the predictions
and the data is shown for the velocity normalized to the peak value. No
conparison of the actual velocities are presented by Cebeci and Khattab
(1975) or by Khattab (1975); only nornalized values are given

Figure 17 presents the tenperature profile data-nmodel conparisons.
Figure 17a shows adequate agreenent although the data have a considerable
amount of scatter. The results given in Figure 17b show excel | ent
agreement between the data and the nodel for air (Cheesewight (1968)),
wat er (Fujii, et al. (1970)), and spindle oil (Fujii, et al. (1970)). A'so
shown are the predictions made by Mason and Seban (1974) which will be
di scussed briefly later on.
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Figure 16. Cebeci and Khattab (1975) velocity profile data-nodel
conparison (Khattab (1975)).

37



1.0
0.8
v
0.6¢
e A \Y Present Method Rax
o) 1.14 x 1012
0.4 _A v Data of
a o Warner and Arpact 1.05 x 101}
a ) v Fujii 1.5 x 1010
A & vifet-Liu 1.14 x 101
0.2+

yIs,

Figure 17a. Cebeci and Khattab (1975) tenperature data-nodel comparison for
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Figure 17b. Cebeci and Khattab (1975) tenperature data-nodel conparison for
air, water, and oil (Cebeci and Khattab (1975)).
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In addition, Figure 17b shows the variation of the turbulent Prandt
number cal cul ated by the nodel. Note that for air, the value approaches
1.3 at the wall and goes to 0.9 further out. This behavior is not in-
consistent with the turbulent Prandtl nunmber experimental data shown in
Figure 13b, although the large scatter in the data prevents any firm
conclusion of the applicability, and a constant value of 0.9 or 1.0 also
seens reasonabl e based on the data

Figures 18a-c show the Nusselt number, or heat transfer coefficient,
predictions for the Cebeci and Khattab (1975) npodel with data for air,
water, and spindle oil. In all cases, the agreement between the nodel and
data is reasonable, although the good conparison may be a little m sleading
for the last two cases. For the first prediction, transition at a Ra,
nunber of 6. x 108 was used in the conputations. However, for the last two
plots, the calculations by Cebeci and Khattab were made by matching the
experinental results for a Ra, nunber of 5.5 x 1019, Therefore, for the
last two cases, only the slope of the predictions should be conpared with
the data. Figure 18d is the spindle oil Nusselt nunber variation for the
Cebeci and Khattab (1975) nodel as presented by Cebeci and Bradshaw (1984).
Note that the Nusselt number predictions are |ower than those presented
earlier by Cebeci and Khattab (1975). Apparently, the values in Figure 184
are those predicted by the Cebeci and Khattab nodel without being nodified
to match certain experinmental results as was done for Figures 18b and 18c.

b. Noto and Mat surnoto

Noto and Matsunoto (1975) applied the forced convection eddy viscosity
expression given by Kato, et al. (1968) to natural convection conditions
assuming a turbulent Prandtl number of 1.0. Noto and Matsumpto (1975) used
the nodel in a local simlarity set of equations to predict the natura
convection boundary l|ayer velocity and tenperature profiles. The eddy
viscosity expression is

2
v /v = 0.4 y+ (1 - exp(-0.0017 y+ )) (47)

wher e

L ro?
14

y Y (48)
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Figure 18. Cebeci and Khattab data-nodel conparisons.
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In contrast to the data shown earlier in Figure 15, the eddy viscosity and
m xing length increases indefinitely as y increases. The inplication of
this behavior will be discussed in nmore detail later.

A velocity profile data-nodel conparison for the Noto and Mat sunpto
(1975) results is shown in Figure 19a including the peak velocity. This
figure gives results for the air data of Cheesewight (1968) which indi-
cates that the predicted shape is simlar to experimental data. The peak
velocity predicted by the nmbdel is about 30% too high in this figure. How
ever, as discussed in detail earlier in this report, the velocity data
reported by Cheesewight (1968) are low. The results of Mison and Seban
(1974) are also shown on this figure; their prediction virtually lies on
top of that by Noto and Matsunpbto. Figure 19b gives the tenperature pro-
file data-nodel conparison which shows good agreenment although the scale is
too conpressed for an accurate evaluation. Figure 20 shows the predicted
Nusselt nunbers for air and for oil. The results conpare well to the data

C. Yang and Ll ovd

Yang and Ll oyd (1985) present a zero-equation turbul ence nodel designed
for nodelling the behavior of vented enclosures. The application of the
nodel is primarily in the area of roomfires to predict the behavior of the
fire and the resulting smoke. The model considers shear stresses in al
directions as exenplified by the equations presented by Yang and LI oyd
(1985) for the two-dinensional case as given bel ow

- 2 9u -1 [8u, 8v r -2 8v (49)
"xx Ret ox '’ Txy Ret dy = 8xj) ’ yy Ret ay
wher e
p U H
Re, = ° © (50)
Peff
and
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1+ 3y ax. Hj

Ri
2 + —=&

Prt

Peff =

The turbulent Prandtl number is assumed equal to 1. The effective viscos-
ity includes lanminar and turbulent contributions and is presumably normal -
ized to the lamnar value. The nixing length expression is

2 2)1/2

(u + v

T

1/2
du, 2 du, 2 av. 2 av. 2
[(5;) + (5;) + (5;) + (5§) ]

1/2 )
Ju, 2 du, 2 ov. 2 v, 2
[(a) + (5};) + (‘a';) + (5§) ]

+ 73 (52)

2 2 2 2
62u 82u 62v 82v
2 T2l f L2tz
ax ay ax ay )

where « i s an adjustable constant equal to 0.2 based on conparison of the

nodel to dat a. The gradient Richardson number, Ri,, is equal to
3T
H
Ri = =& 6y2. (53)
g b au
3y

where T, u, and y are nornmalized values and ﬁo is a reference velocity.

The nodel has some desirable features in that it is symetrical wth
respect to x and y, and buoyancy is included through the gradient Richard-
son nunber. The nodel is discussed further by Yang and Lloyd (1985). How
ever, while the approach seens reasonable, the only data-nodel conparisons
presented are for the entire enclosure nodel, such as the tenperature dis-
tribution in an outlet doorway, no conparison to boundary |ayer data is
given. Since these data-nodel conparisons are not presented, nodifications
to the nodel needed for use in this study cannot be evaluated, and this
model is not discussed further in this report.
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d. Popovand Yan' kov

Popov and Yan' kov (1985) present a nodel for natural convection that is
based on forced convection eddy viscosity fornulae. The buoyancy effect is
i ncluded through a Ri chardson nunber and through inclusion of the enthal py
gradient on the shear stress. The shear stress and heat flux equations are

2
du Lgl p éh
Tom v g c, Pr, 3y (54)

q = - (—+pa ) . (55)

The expressions given above are equival ent to those derived in Appendi x
A except for the second termon the RHS of the shear equation. In this

nmodel, the effect of the tenperature (or enthal py) gradient is included in
the shear stress. The turbulent eddy viscosity expression is

2 1/2
t + 4 - 2
21 Yo o Yeo Yto Yt (56)

where the subscripts 0 and = refer to values as R =+ 0 and = which are

2 - 2
2 )
2 du du
a3y 3y )

c_ Pr. |ay (58)

z1/2
y -m12[ g  |oh
tw
P t J

and the R chardson nunber is

aT
-Bsg 3v

Ri = 3u [ou] - (59)
dy |dy
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The - and + sign in the last term of the eddy viscosity expression is
applicable for R > 0 and < 0, respectively. The expression for v,, uses a
modi fication to the Prandtl nixing length which is discussed in Appendix B.

The value of the mixing length is based on expressions derived from
forced convection data. The nixing length equation is

[ut]b.l. [ [ut]b.l. ] 1/2
— 1 + —
1 u+ v v (60)

R 2 + 1/2
2] =o0.5+ [ 0.25 + e R} 2 REu (61)
u, Prt Prt u,
1/2
w, = (r /0" (62)
and
+
+ tanh (y /n,)
v ]b.1. k y 1 —— 0 < y+ =20
o = (y /n;) (63)
ky W) 20 < y+
7_|b.1.
TW
- 0<Y=x<0.5
¥(yY) = 1 + =xnY sin(rY) ) (64)
Y-0.5
¥(0.5) exp -[04] ] Y>0.5
Y = y/6 (65)

and equations for QY and (r/r,)k-l- are given by Popov (1970). The
expression for (v/vy)b-1- is the Reichardt formula for near wall eddy
viscosity in forced convection. The ¥(Y) and (r/7,)P-1- equati ons are based
on Coles’' wake law, which is also for forced convection, Details on
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the original models of Reichardt and Coles can be found in Hinze (1975).
Values of v, m, n, k, and 5, are discussed by Popov and Yan'kov.

In the above model, the boundary layer thickness, §, is defined by

- 5y
Y= = 2.5 (66)
1/2
where §,,, is the distance where u = 0.5 u,,, and y, is the location of the
maximum velocity. Figure 21 indicates the usefulness of this relationship
as the outer region velocity profiles collapse onto a single curve shape

for a number of different fluids.

Results from this model including comparison to data are shown in Fig-
ure 22a for air. Curve 1 and 1’ are with and without the buoyancy modifi-
cations, respectively., The velocity data are from Cheesewright (1968),
while the temperature data are from Cheesewright (1968) and from Warner and
Arpaci (1968); Nusselt number data are also included. The predictions from
a number of other investigators including Noto and Matsumoto (1975) and
Mason and Seban (1974) are shown in the figure. Results for the Popov and
Yan'kov model without buoyancy effects will be evaluated; buoyancy effects
will not be addressed in the present investigation. In this manner, all
the mixing length models can be assessed on an equal basis. Without the
buoyancy modifications, the Popov and Yan'kov model velocity profile
results are poorer than those of Noto and Matsumoto. These results are
very similar to those of Cebeci and Khattab (1975) for the same data as

shown later.

Figure 22b shows the velocity profile predictions for the Vliet and Liu
(1969) water data and for ethyl alcohol data of Kutateladze, et al. (1972).
Comparisons for the water data look good although, as discussed later, the
predictions of Mason and Seban (1974) are similar. The model overpredicts
the ethyl alcohol velocity data by about 10 percent; this model is the only

known comparison to these data.

Without buoyancy, the basic Popov and Yan'kov model gives results
similar or not as good as other zero-equation models. The Popov and
Yan'kov approach offers no significant advantage compared to other
approaches and has the disadvantage of a complicated form. Therefore, the
Popov and Yan'kov model has not been investigated further in this study.
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2. One- and Two-Equation Models

As discussed briefly earlier in this section and in Appendix A, one-
and two-equation eddy viscosity models are much more complicated than zero-
equation models since additional PDEs are added to the equation set. For
example, the turbulent shear stress for an eddy viscosity model is

' ' au
-uv o =v, 5;. (67)

The value of v, for a two-equation k~e¢ model is (Yang and Aung (1985))

v, =C — (68)

where k and ¢ are determined from the solution of appropriate PDEs for k

and ¢, and Cyu is a constant.

Numerical studies using the more complex one- and two-equation models
have been conducted by Mason and Seban (1974), Plumb and Kennedy (1977),
Lin and Churchill (1978), To and Humphrey (1986), and Heiss, Straub, and
Catton (1988). 1In addition, To and Humphrey (1986) have used an algebraic
stress turbulence model for their studies, while Heiss, et al. (1988)
investigated algebraic and Reynolds stress models. Henkes and Hoogendoorn
(1989b) compared the Cebeci and Khattab (1975) model (referred to as the
Cebeci and Smith (1974) model) and a number of two-equation k~¢ models to
"generic" turbulent data. The results from some of these investigations

are summarized in the next section.

C. Data-Model Comparisons

Data-model comparisons for the zero-, one-, and two-equation eddy
viscosity turbulence models are presented in this section to indicate the
predictive differences in the various approaches. All of the one- and two-
equation studies, with the exception of Mason and Seban (1974), only
present data-model profile comparisons for turbulent conditions in air.
Mason and Seban (1974) present air and water data-model comparisons for
their one-equation model. 1In addition, only the Popov and Yan'kov (1985)
model has been compared with the ethyl alcohol data of Kutateladze, et al.
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(1972). Thus, the data-model comparisons are very limited in scope with

respect to the fluid involved and are primarily concerned with air.

Results from the zero-equation models were not compared to the Cheese-
wright and Ierokiopitis (1982) data by the original authors. Heiss, et al.
(1988) did a partial comparison for the Cebeci and Khattab (1975) and Noto
and Matsumoto (1975) approaches for the velocity and Nusselt number data.
However, for both models, Heiss, et al. (1988) used a constant turbulent
Prandtl number of 0.9 which is not in agreement with either original model.
The net effect is probably small, but it precludes an exact comparison of
the original models to the data. In their comparison, Heiss, et al. (1988)
numerically integrated the boundary layer equations up the plate.

Figure 23 compares the mean velocity profiles predicted by a number of
methods with the Cheesewright and Ierokiopitis data as presented by To and
Humphrey (1986). Figure 23a shows the zero-equation velocity profile
results given by Heiss, et al. (1988). The Cebeci and Khattab model over-
predicts the velocity peak and underpredicts the velocity further out. The
Noto and Matsumoto model results agreé well with the peak value, while the
velocity further out is only slightly underpredicted. Additional discus-
sion of the Noto and Matsumoto (1975) model is given in the next sectionm.
Also shown are the results from an early forced convection zero-equation
model by Escudier (see Heiss, et al. (1988)) which is very similar to the
Cebeci and Khattab (1975) approach. Figure 23b from Heiss, et al. (1988)
and Figure 23c from To and Humphrey (1986) compare one- and two-equation
results and those for a k~¢ model and an algebraic stress model (ASM) with
the same data. All of these models predict the peak velocity well, and
most of the models slightly underpredict the velocity further out.

Comparisons were also performed by Henkes and Hoogendoorn (1989b) using
the Cebeci and Khattab (1975) model and nine different two-equation k-e¢
models. The predictions were compared to "generic" turbulent velocity and
temperature profiles for air for a Grashof number of about 1011 (see Henkes
and Hoogendoorn (1989b) for the exact range). Figure 24 shows the velocity
profile data-model comparison. The Cebeci and Khattab (1975) model over-
predicts the velocity maximum and underpredicts the velocity further out.
In contrast, most of the k-~ models perform much better than the Cebeci and
Khattab (1975) model and are in reasonable agreement with the data. Over-
all, these results are similar to those presented by Heiss, et al. (1988).
Note that Henkes and Hoogendoorn (1989b) were not able to duplicate the k-~¢
model results reported by To and Humphrey (1986).
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Mean temperature profile comparisons have been given by To and Humphrey
(1986) for air as shown in Figure 25 based on the early Cheesewright (1968)
data and on the Miyamoto, et al. (1982) data. All the models overpredict
the temperature at moderate distances from the wall. Comparison of the
zero-equation results was presented earlier in Figures 17 and 19 with
similar results. The results of Henkes and Hoogendoorn (1989b) are given
in Figure 26. This comparison indicates that most of the models slightly
underpredict the temperature near the wall but overpredict it further out.
The Cebeci and Khattab (1975) model, however, does just the opposite as it
overpredicts near the wall and underpredicts further out. One interesting
comment should be made about the Cebeci and Khattab (1975) temperature
profile which has also been seen in the present investigation. The temper-
ature profile has a "kink" in it at a { value of about 1. This "kink"
occurs at the velocity maximum and is related to the mixing length defini-
tion which is proportional to the mean velocity gradient. This "kink" is
also seen in the results predicted by the present model as shown later.
Problems with the mixing length methodology at velocity maximums or
minimums are discussed in more detail in Appendix B.

Nusselt number results are presented in Figures 27a and 27b from Heiss,
et al. (1988) and Figure 27c from To and Humphrey (1986). All the predic-
tions are in reasonable agreement with the data. The Nusselt number
comparison presented by Henkes and Hoogendoorn (1989b) is shown in Figure
28. The Cebeci and Khattab (1975) model gives a low value of the Nusselt
number. The largest discrepancy between the models is related to the
location of the start of turbulence.

All of the above data-model comparisons are for air. The water data-
model comparison for the mean velocity is given in Figure 29 for the Mason
and Seban (1974) one-equation model, and the predictions agree well with
the data. Note that the same Mason and Seban (1974) model did not agree as
well with the air data as shown in Figure 23c. The Mason and Seban (1974)
model also agrees well with water temperature profile data as shown earlier
in Figure 17b. 1In contrast with the numerous data-model comparisons for
air, the results of Mason and Seban (1974) and of Popov and Yan'kov (1985)
in Figure 22b are the only comparisons available for water. For ethyl
alcohol, the Popov and Yan'kov (1985) model compares reasonably well to the
data as shown previously in Figure 22b and is the only known comparison to
those data.
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Figure 27a.

Figure 27b.

Figure 27c.

10?

MMA -~ Noto and Matsumoto (1875}
MMB - Escudier (1966)

] a7 - MIC - Cebeci end Khattab (1975)
[ ! -
Se B — MM
“--- MMB
——— MMC
Ch ight and
lcrm in
‘°| .
10° 10° 10' 10"
——p I'.

Zero-equation model comparison with Nusselt number data (Heiss,
et al. (1989)).

10?

KEM-k ~ ¢ nodel
KETM - k ~ ¢ - T'2 nodel

— KEM
-« KETM
Cheesewright and
o Icrokjpioth
10’
10° 10 10' 1"
—_— Gr,

Two-equation model comparison with Nusselt number data (Heiss,
et al. (1988)).

]

0
o Masor. and Seban | 18] (r-I:
0 Plumb and Kenned) [IS] (k-s)
0 Lin and Churchill [20] (k—¢)
a KEM. AT = 56°K
ASM AT = 56°K -
10— v ASM.AT = 404°K = v
SM. AT = v
=
10+~
Eckert and Jackson [11].  Nu, =0 022 Gr¥/®
....... Bayley(12]. Nu,=0.114Gr}/?
Siebers et d {10]. Nu, = 0.096 Gr}/3
T, =0M
—_— Siebers c'd [10]. Nu, = 0.088 Gr}/3 (J‘_)
L2
—_——— Miyamotoet d {8]. Nu, = 0104 (Gr Pr)°® 72
10 | 1
10 10" 10" 1w

Gr,

Data-model comparison for Nusselt number including stress models
(To and Humphrey (1986)).
56



Figure 28.
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D. Overall

Based on the above data-model comparisons, the zero-equation eddy vis-
cosity nodel s should provi de a reasonable picture of the effect of turbu-
lence on the velocity and temperature profiles as well as the Nusselt
number. The agreement, while only fair for air and ethyl alcohol, is good
for water. No data-model comparison is available for higher Prandtl number
fluids such as oil. Some improvement could be gained from one-equation or
two-equation models, but the added complexity and computer time and the
question of applicability to a mnew fluid are not indicated for use in the
SPR fluid velocity model.

The Noto and Matsumoto (1975) model looks good when compared to air
data, but Gominho and White (1984) have noted some problems with the ap-
proach, especially in the outer region of the boundary layer. The Cebeci
and Khattab (1975) approach, while not predicting the data as well as the
Noto and Matsumoto (1975) model, is based on a well-established forced
convection model and gives reasonable predictions. Other zero-equation
models have been discussed earlier, and only the Cebeci and Khattab (1975)
and Noto and Matsumoto (1975) models will be considered further.

While the Noto and Matsumoto (1975) model has been applied to the local
similarity equations, the Cebeci and Khattab (1975) approach has not been
and will have to be modified as developed in the next section. Both models
as applied to the local similarity equation set will be compared to the
available data discussed earlier to allow for a more complete evaluation of
the two models under the conditions that they will be used.

C. Local Similaritv Turbulence Model

1. Model Modification

The Noto and Matsumoto (1975) model does not need to be modified for
application to the local similarity approach since the eddy viscosity is
simply a function of y*, or distance from the wall. However, the Cebeci
and Khattab (1975) method needs some revision. As summarized earlier, the
eddy viscosity is divided into two regions. The eddy viscosity in the
inner region is simply a function of y and the local velocity gradient, so
no changes have to be made in this region. In the outer region, the eddy
viscosity is proportional to the boundary layer thickness and the velocity
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gradient. Based on the local similarity requirement, the boundary layer
thickness is based on the velocity profile at that location only; no

feedback from the thickness at other locations can be used.

A straightforward application of the Cebeci and Khattab (1975) model
would be to calculate the boundary layer thickness from the calculated
velocity profile. However, this procedure is divergent. If the boundary
layer thickness is overestimated, the outer region viscosity will also be
too high. 1In turn, this behavior will increase the boundary layer thick-
ness, and the process will diverge. Similarly, underestimation of the
boundary layer thickness will result in too small a viscosity, and the same
divergent cycle occurs. Thus, the present form of the Cebeci and Khattab
(1975) model is incompatible with the local similarity requirement.

The Popov and Yan'kov (1985) velocity profile shape discussed earlier
was also briefly considered. However, the relationship (Equation 66) only
gives the boundary layer thickness in terms of the value where u = 0.5
Uy.x- This expression would lead to the same divergent cycle as discussed

above.

In order to apply the Cebeci and Khattab (1975) model to local simi-
larity, an expression for the boundary layer thickness is needed which will
cause the iterative procedure to converge. George and Capp (1979) devel-
oped a theory for natural convection turbulent boundary layers on a heated
vertical surface which indicates that the thickness of the velocity
boundary layer scales with the velocity or displacement boundary layer

thickness, 6%, which is defined as

* u
6 = J " dy (69)

where uy,, is the maximum boundary layer velocity. Support for this
scaling concept is from the velocity profile air data of Cheesewright
(1968) and the water data of Vliet and Liu (1969) as shown earlier in
Figure 10. Based on these data, a preliminary relationship is developed
for the boundary layer thickness as

y(u-0) = § ~ 2.5 5~ (70)
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This relationship provides a feedback mechanism on the boundary layer
thickness used in the eddy viscosity model which allows for convergent
iteration in the similarity method. The boundary layer thickness from the
velocity profile and the displacement thickness, §*, hiave different func-
tional relationships, and the iteration on the boundary layer velocity
profile converges.

To further support this relationship, some of the Miyamoto, et al.
(1982) data has been used. The displacement thickness correlated in their
study is given by the equation

* 5-0.104
§ = 0.743 er X. (71)

The velocity data are given as velocity as a function of ¢, which is

¢ - 2 Nu_. (72)

X

Using the appropriate Nusselt number correlation given in the paper, and
estimating the boundary layer thickness from the velocity plots, the bound-
ary layer thicknesses for the two turbulent velocity profiles reported are

in the range

*
§ ~2.4 to 2.856 (73)

which is consistent with the value of 2.5 estimated earlier. Therefore,

this preliminary relationship will be used to close the Cebeci and Khattab
(1975) model for use in the local similarity approach. Since the constant
of 2.5 is uncertain, the value will be treated as a parameter in the data-

model comparison.
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Comparison to Data

The predictions of the local similarity Cebeci and Khattab and the Noto
and Matsunpto (1975) models will be compared to the natural convection
velocity profile data discussed earlier. Three curves are shown for the
modified Cebeci and Khattab model corresponding to § values equal to 2.0,
2.5, and 3.0 times 6*. Table 2 summarizes the investigators, fluid, wall
conditions, and Grashof numbers involved. All the data have been trans-
formed into the local similarity coordinates for consistent evaluation.
The conversion process is summarized in Appendix C for each data set.
Uniform environmental conditions have been assumed. The predictions for
the local similarity Cebeci and Khattab model will be presented first for
all the fluids followed by the Noto and Matsumoto results.

Figure 30 gives the results for the modified Cebeci and Khattab model
for the air data listed in Table 2. A systematic overprediction of the
peak velocity peak by about 20-40% is noted. Of course, the peak velocity
overprediction is higher for the early Cheesewright (1968) data which are
known to be low. For the most recent data (Tsuji and Nagano (1988)), the
peak velocity is overpredicted by about 20%. The slope in the outer edge
of the boundary layer can be reasonably approximated by a constant equal to
about 2.5 in the boundary layer thickness relationship, although this
number varies between 2.5 and 3.0 for the various data sets.

Figure 31 shows the local similarity Cebeci and Khattab model results
for the water data in Table 2. In contrast to the air data, the model
predictions using the Cebeci and Khattab approach agree well with the Vliet
and Liu (1969) data including the value of the peak velocity for both
Grashof numbers. Again, a constant equal to 2.5 in the boundary layer
thickness relationship looks adequate.

The Lock and Trotter (1968) results are also shown in Figure 31. The
model predictions are inconsistent with the data. Upon closer examination
of the data, some problems are apparent. The data are inconsistent with
that of Vliet and Liu (1969). According to information given by Vliet and
Liu (1969) and by Jaluria (1980), the flow is probably laminar. In addi-
tion, the dimensionless velocity results indicate a velocity peak at f' of
0.32. For laminar conditions, the peak f’' value for the Prandtl number of
10.25 is about 0.11 from Table 1. Therefore, the data of Lock and Trotter
(1968) are questionable and this data-model comparison will not be used in
the final evaluation of the turbulence model.
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Table 2

Data for Data-Model Comparison

Author

Air Data (Pr ~ 0.72)

Cheesewright (1968)

Hoogendoorn and Euser (1978)

Cheesewright and Ierokiopitis (1982)

Miyamoto, et al. (1982)

Tsuji and Nagano (1988)

Water Data (Pr ~ 6.7 - 10.25)

Vliet and Liu (1969)

Lock and Trotter (1968)

Ethyl Alcohol (Pr ~ 13.2)

Kutateladze, et al. (1972)

* - UWT - Uniform Wall Temperature
UHF - Uniform Heat Flux
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Conditions*

UWT
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UHF

Gr, Range

-

.55 x
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The data-model comparisons for the ethyl alcohol data from Kutateladze,
et al. (1972) are shown in Figure 32. The peak velocity is overpredicted
by the modified Cebeci and Khattab model by about 40%. A constant of 2.0
in the boundary layer thickness equation looks reasonable. The velocity
data are more like the laminar profile as shown in Figure 32a than the
turbulent predictions. This result is surprising in light of the excellent
data-model agreement for water which has a similar Prandtl number and the
fact that the overprediction by Popov and Yan'kov (1985) was only about
10%. This discrepancy has not been fully resolved at the present time.

Figures 33, 34, and 35 show the data-model comparison for the Noto and
Matsumoto model and the data for air, water, and ethyl alcohol, respect-
ively. 1In general, the predicted peak velocity is slightly lower than for
the modified Cebeci and Khattab model and more in line with the data,
especially for air and ethyl alcohol. However, the outer region of the
boundary layer including the boundary layer thickness is greatly overpre-
dicted by the Noto and Matsumoto (1975) model for all the data. The large
difference between the present results and the data is due to the eddy
viscosity formula. The eddy viscosity and effective mixing length increase
continuously in contrast to data shown earlier in Figure 15. The present
results have been calculated by requiring conservation of momentum and
energy in the boundary layer within 1% or less as discussed in Section II.
In order to conserve momentum locally, which is consistent with the local
similarity assumption, the boundary layer must have negligible shear at 7.
The slope at 5o has to be very small with the large viscosity inherent in
the model, so the boundary layer thickness will be too large.

In contrast, the Noto and Matsumoto (1975) model seems to compare
reasonably well to data as shown earlier in Figure 19a and in Figure 23.
The velocity profile results given by Noto and Matsumoto in Figure 19a have
been recalculated in Figure 36. Based on the local similarity assumption
imposed by Noto and Matsumoto, momentum and energy should be conserved in
the profiles. For ne, equal to 29.5, the velocity profile predictions are
reasonably consistent with those in Figure 19a. However, as shown in Table
3, momentum is not conserved within a factor of 2., and the error in energy
is 45%. Thus, significant conservation problems may exist with the earlier
results of Noto and Matsumoto. Note that the Heiss, et al. (1988) results
given earlier in Figure 23 may not have the same problem since the conser-
vation equation were integrated along the plate and local similarity was
not imposed.
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Table 3

Noto and Matsunoto Conservation Results

for Pr-0.72
Conservation_ of Conservation of
fw Monentum Energv?
Lam nar
10. 1.004 0. 9998
Tur bul ent (Gr,=1019)
29.5 0. 46 1.45
50. 0.55 1.18
100. 0.73 1.05
200. 0. 89 1.012
300. 0. 947 1. 006
400. 0.976 1. 005
500. 0. 993 1. 004
600. 1.003 1.004

1 - Conservation of Mnentum =

2 - Conservation of Energy =

0 ’ ’
- ‘E%' [ (5n + 3) I £6dg+J J £ dn ].
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Based on the above results, the local sinilarity Cebeci and Khattab
nodel perforns better than the Noto and Matsunoto (1975) approach and wll
be used in this investigation. The constant in the boundary |ayer thick-
ness relationship will be equal to 2.5, or

*
§ =2.56 . (76)

Wi | e the data-nodel conparisons for air and ethyl alcohol do not | ook
particularly good, the water results are encouraging. The discrepancy in
the ethyl alcohol data-nodel comparison is unresolved at the present tine.
Ot her questions such as inclusion of buoyancy terns are currently under
investigation. Neglecting the ethyl alcohol data, the current nodel seemns
to work better for higher Prandtl number fluids. This trend is also the
case for the one-equation nodel of Mason and Seban (1974) as shown earlier
in Figures 23c and 29. \Whether the local similarity Cebeci and Khattab
model works well for oil is not known and will not be until data becones
avail abl e.

The velocity predictions compared to the data have al ready been
presented earlier in Figures 30 to 32. Tenperature profile and Nusselt
nunber conparisons to data will now be presented for the final simlarity
model discussed above. Figure 37 conpares the calculated tenperature pro-
files to data and to the results presented by Cebeci and Khattab (1975).
The data are from Cheesewight (1968) for air (Pr-0.72) and from Fujii, et
al. (1970) for water (Pr-5.9) and oil (Pr-58.7). The profiles conpare
reasonably well, although a "kink" is noted in each curve which corresponds
to the location of the velocity maxi mum and zero turbul ent transport as
discussed earlier. Note that the "kink" is nore severe for the |ocal sin-
larity nethod than for the finite difference solution of Cebeci and Khattab
(1975). The reason for this difference is that the local simlarity ap-
proach assunes negligible transport in the x-direction along the plate.
Transport in this direction is included in any finite difference
cal culation such as that of Cebeci and Khattab (1975).

Nusselt nunber predictions are shown in Figure 38 along with the Cebec
and Khattab (1975) predictions and some data. Figure 38a shows the conpar-
ison for air which indicates that the local simlarity nmodification has not
significantly altered the Nusselt nunber predictions of the original Cebec
and Khattab (1975) approach. Figure 38b gives the same results for oi
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Figure 37. Conparison of local simlarity nodel tenperature profile with
data and Cebeci and Khattab (1975) results.
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Figure 38. Conparison of local simlarity model Nusselt nunber results with
data and Cebeci and Khattab (1975) predictions.
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where the unnodified Cebeci and Khattab predictions as given by Cebeci and
Bradshaw (1984) are used. Again, the differences due to the local sinmlar-
ity modification are small. No Nusselt nunber conparison for water has
been presented since unaltered Cebeci and Khattab results are not avail -
abl e.

Conparison of the simlarity nodified Cebeci and Khattab nodel to the
original nobdel and to data indicates that the velocity predictions are
reasonabl e, although the predictions of the original and nodified nodels
are probably too high by up to 30% conpared to the data. The reason for
this overprediction is currently being investigated. Tenperature and
Nusselt nunber predictions conpare well to the original Cebeci and Khattab
(1975) predictions and to the data. Therefore, the local simlarity nodi-
fication gives good results conpared to the original nodel and has not
significantly altered the behavior of the original nodel
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V. Mxed Convection

M xed convection occurs when buoyancy (natural convection) and forced
convection forces act sinultaneously. Depending on the direction of the
buoyancy force and the forced convection flow direction, mxed convection
can be classified as buoyancy assisted or buoyancy opposed. A recent
review of mxed convection is given by Jackson, Cotton, and Axcell (1989).

Buoyancy assisted m xed convection occurs if the buoyancy force and the
forced convection flow are in the sane direction. For example, for a
heated plate, the buoyancy force is upward, and buoyancy assisted m xed
convection occurs if the forced convection flow is upward. Downward forced
flow over a cooled wall would also result in assisted mixed convection.
Buoyancy opposed mi xed convection occurs when the two forces act opposite
each other, as in downward forced convection over a heated vertical wall or
upward forced flow over a cooled wall.

For buoyancy opposed conditions, the buoyancy force counteracts the
forced convection velocity, and two situations occur depending on which
force dominates in the near-wall region. |If the buoyancy force is rela-
tively weak, the net effect will be a slight nodification of the forced
convection velocity profile, but the velocity will be unidirectional in the
direction of the forced flow.  However, if the buoyancy force is relatively
strong, "flow reversal" occurs in which the flowdirection is different in
the inner and outer portions of the boundary layer. For exanple, the flow
may be upward near the wall due to the buoyancy force but downward far away
fromthe wall due to the forced convection. The various mixed convection
flow reginmes are schematically depicted in Figure 39 for a heated wall

The relative strength of the buoyancy to forced convection contribution
is neasured by the ratio of the Gashof nunber to the Reynol ds nunber
squared. This ratio can be expressed in ternms of the natural convection
simlarity variable f5 as

Gr 2

= Gr 1

£ = - (77)

14
Re U2 x2 4 f
X @® ]
For | am nar buoyancy opposed mi xed convection, flow reversal has been
observed in air for € values above 0.20 (Ramachandran, Arnmaly, and Chen

(1985)).
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Figure 39. Mxed convection regimes for a heated wall.
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For application to SPR and the enclosure problem the forced convection
effect on the profiles should be snall since the free stream or centra
core, velocity is much snaller than the peak boundary |ayer value as shown
in Webb (1988a). The SPR flow pattern is clearly in the flow reversal node
since the boundary layer flow is upward while the central core region velo-
city is downward. For the exanple shown in Wbb (1988a), the fluid is
water, and the central core velocity is approxi mately 10 percent or |ess of
the peak boundary layer velocity. From Table 1, the peak velocity for pure
natural convection for water is approximately 0.13. Assunming that this
val ue does not change significantly for the small central core region velo-
city encountered, the central region value of fg is about 0.013 which gives
€ ~ 1500. Figure 40 gives some mxed convection heat transfer results for
various Prandt|l nunbers. Cearly, this large value of £ indicates that
this flow is controlled by natural convection and that the present
application is buoyancy doninated.

Experinental and analytical efforts in the nmixed convection reginme have
been predomi nantly occupied with the effect of buoyancy on forced convec-
tion. In this case, the value of £ is typically 1 or |ess, buoyancy ef-
fects are small, and forced convection approaches are appropriate. The
opposite case of forced convection effects on buoyancy flows with ¢ much
| arger than 1 where buoyancy effects dom nate, such as in the present
application, has received much less attention. This lack of information in
t he buoyancy doni nated opposed mi xed convection regime for |aninar and
turbulent flow will be obvious in the follow ng sections.

A. Lam nar Conditions

1. Mxed Convection Data

Data for |am nar mixed convection generally consist of heat transfer
coefficients or Nusselt nunbers as a function of €. Velocity and tenp-
erature data are only available from a few investigations. According to
Ramachandran, Armaly, and Chen (1985), Kliegel (1959) reported the first
m xed convection nmeasurenments for heat transfer in the assisted and opposed
m xed convection regimes not including the flow reversal region. Heat
transfer data were reported, but velocity and tenperature profiles were not
measured. Gryzagoridis (1975) reported sone additional assisted nixed con-
vection data which included velocity and tenperature data. However, signi-
ficant differences exist between his data and various anal yses. Hi shida,
et al. (1983) reported some opposed mnixed convection data for velocities
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Figure 40. M xed convection heat transfer results (Chen, Armaly, and Aung
(1985)).
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and tenperatures, again confined to the unidirectional reginme. Some in-
consistent results are noted between the data and their nunerical results.
Finally, Ramachandran, Armaly, and Chen (1985) report sone assisting and
opposing velocity and tenperature information. The flow reversal region
was not investigated. Conparison of their data with numerical predictions
i ndi cates good agreement. As expected, heat transfer is increased for
assisted mxed convection while it is inpaired for opposed conditions.

The data taken by Ranmachandran, et al. (1985) are shown in Figure 41
along with results fromthe finite difference analysis. The simlarity
vari abl es used, F'(é,n) and n, are the forced convection form or

F (6,) = — (78)
. 1/2
n= 5] v (79)

For assisted m xed convection, the value of € is up to 16. which indicates
a reasonabl e buoyancy contribution to the velocity and tenperature profiles
as can be inferred fromthe velocity profile data. For opposing flow, the
mexi mum val ue of £ is 0.208, and the profiles are domi nated by forced con-
vection. No data were reported for the flow reversal region in opposed

m xed convection.

2. Mxed Convection Mdels

A nurmber of different techniques have been used to anal yze | am nar

m xed convection conditions, ranging from series solutions (Merkin (1969))
to local simlarity based on the forced convection simlarity variables
(LIoyd and Sparrow (1970)) to finite difference nethods (Ramachandran, et
al. (1985)). The local simlarity technique will be used for the present
application as required by the M.S approach. However, since natural con-
vecti on phenonena are domnant in the present application, the simlarity
technique will be based on the natural convection equations, not on the
forced convection set.
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Local simlarity techniques have been applied to mxed convection prob-
lems by Lloyd and Sparrow (1970) anong others. However, these anal yses
studied the effect of natural convection on forced convection and were
based on the forced convection local simlarity equations. According to
LI oyd and Sparrow (1970), the natural convection local simlarity equations
are not applicable to nmixed convection. The reason for this statement can
be seen by inspecting the local simlarity equations

L '2
f + (n¥3) f f" - 2 (n+t1) T + 6 = O (80)

+(+3)f 6 -4 nf 6 = O (81)

]
Pr

Inthe limt as g = o, "' (0) = f'' () = f(x=) = 0. For these conditions,
£'(«) must equal 0. fromthe above local sinmlarity equations, and the
nonzero £’ (») boundary condition in mixed convection cannot be satisfied.
Therefore, the standard local simlarity natural convection formis not
applicable to mxed convection conditions. Note that this Iimit is easily
satisfied by the forced convection simlarity equations since the free
stream («) condition is nonzero in the general forced convection case.

For a small buoyant effect on the forced convection equations, |ocal
simlarity based on forced convection gives reasonable results when com
pared to local nonsimlarity and finite difference solutions according to
Ramachandran, Arnmaly, and Chen (1985). However, for &é=1, differences of
12.6 and 15.7 percent are noted in the f"(Q values for the local sinmlari-
ty technique conpared to local nonsinlarity and finite difference results,
respectively, for the case of assisted mxed convection in air. Cearly,
for nore domi nant natural convective conditions such as encountered in the
present case, differences would be even greater, and the local sinmilarity
approach based on the forced convection equations is not appropriate.

Currently, no local simlarity mxed convection nodel exists based on
the natural convection simlarity variables as needed for application of
the current nodel to SPR caverns. The present study is the first
application of the natural convection local sinmlarity equations to nixed
convection. The required nodel is developed in the next subsection.
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3. Local Simlarity Mbdel

The natural convection local sinmilarity equations are

e '2

f + (n#3) T f" - 2 (n+l) f + 6 = 0 (82)
9\\ ‘ ‘ B

pp t@3)f 8 -4nf' B -Jf =0 (83)

where, for generality, the fluid tenperature stratification variable, J,
has been included in the energy equation.

As nentioned earlier, in the Ilimit as n - «, the above nomentum and
energy equations are not able to accommbdate a nonzero vel ocity boundary
condi ti on. In order to handle this boundary condition, some ad hoc nodi-

fications have been nmade to the above simlarity equations, and the result-
ing equations are

,2 ,2
f + (n+3) f " - 2 (nt+l) [f -Afm}+0=0 (84)

y !

Pr+(n+3)f6? -4nf‘€-J(f‘-fw)-0. (85)

where A is the sign of the local value of f£'f,. Thus, the sign A depends
on whether the local velocity and the far-field velocity are in the same
direction or not. Wile these nodifications are ad hoc, the formhad to
satisfy certain requirements. The Atermis needed to differentiate

bet ween buoyancy assisted and opposed conditions. In addition, the

behavi or of the expression is consistent with intuition. For opposed m xed
convection, an increase in fo (larger opposing velocity) decreases the

maxi mum boundary | ayer velocity and the buoyancy mass flow rate. The
opposite trend occurs for assisted mxed convection. Finally, of course,
the termvanishes in the limt of pure natural convection (fe=0).

The useful ness of the above nodel can be established by conparison to
appropriate experinental data. ldeally, the conparison should be made to
opposed mni xed convection velocity and tenperature profiles with fl ow rever-
sal. However, as discussed in the previous section, such data are not
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avail able. Therefore, the data of Ramachandran, et al. (1985) for assisted
m xed convection have been enployed. The data consist of some forced con-
vection dom nated data (typically & < 1) and some buoyancy domi nated data
(typically ¢ > 1). The present nodel will be conmpared against the detail ed
velocity and tenperature profile information for the three € val ues of
1.884, 7.324, and 16.021 as well as to the results of nunerical analysis.

The data-nmodel conparison for the present nodel is shown in Figure 42
interns of the natural convection simlarity variables, not the forced
convection ones. For the & value of 1.884, reasonable agreement between
the present sinplified nodel and the nunerical predictions is noted. The
peak velocity is slightly overpredicted as is the wall tenperature gradi-
ent, but the ad hoc nodel seems reasonable. For the higher € nunmbers, the
agreenent is nuch better. The velocity and tenperature profiles are
surprisingly well predicted for all three cases considering the sinple ad
hoc nodifications made to the local sinmlarity equations. The changes seem
more than adequate for natural convection domi nated m xed convection, at
| east for the buoyancy assisted case. Since the buoyancy opposed case of
interest in the present study is buoyancy doninated even nore so than the
above data, the present method is expected to be adequate for these condi-
tions. However, until applicable data become avail able to adequately test
the present nodel, full evaluation is inpossible.

B. Turbul ent Conditions

1. Mxed Convection Data

Turbul ent m xed convection data have generally been obtained for the
forced convection domi nated case. For this condition, the effect of buoy-
ancy on forced convection heat transfer is unexpected (Jackson and Hall
(1978)). Contrary to lanmnar flow behavior, for assisted m xed convection,
heat transfer can be |ower under certain conditions than for pure forced
convection. For opposed m xed convection, heat transfer can be enhanced
over the forced convection value. Some velocity and tenperature profile
data have been obtained for the forced convection dom nated case (Carr, et
al. (1973), Nakajim, et al. (1980)) with a maxi mum value of £ of 0.002.
Axcell and Hall (1970) present somevelocity and profile data for air with
a maxi mum € val ue of about 4.0. However, the data are clearly dom nated by
forced convection and are not in the flow reversal regime.
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For the natural convection dom nated case, only one experinental
investigation has been performed. Hall and Price (1970) obtained sone
assi sted mxed convection heat transfer data for a vertical heated plate in
air with a maximum ¢ value of about 50. Again, turbulent nixed convection
yi el ded some surprises since the heat transfer was |ower for assisted m xed
convection under certain conditions than for pure natural convection. Only
qualitative velocity and tenperature profile infornation was obtained in
this study; no quantitative profile data are presented.

2. Mxed Convection Mbdels

A nunber of nodels for turbulent mxed convection flow have been
devel oped. However, simlar to lamnar mxed convection, nost of the
nodel s proposed and eval uated deal with the effect of buoyancy or natural
convection on forced flow conditions. The effect of forced convection on a
predom nantly buoyancy driven problem has not been as extensively studied.

Model s for the turbulent effects in mxed convection are generally in
the eddy viscosity class, although Swanson and Catton (1987) applied the
surface renewal theory to turbul ent m xed convection including the flow
reversal regine. Their nodel gave good results for the heat transfer vari-
ation for opposed mixed convection donminated by forced convection. For the
eddy viscosity approaches, a few zero-equation and two-equation nodels have
been used as discussed bel ow.

Qost hui zen (1974) proposed the only known nmodel for turbul ent nixed
convection flow for buoyancy domi nated conditions. His nodel is based on a
m xing length eddy viscosity approach nodified for buoyancy effects. The
m xing length nodel enployed is simlar to that used by Cebeci and Khattab
(1975) for pure natural convection. The one adjustable constant in the
nodel accounting for buoyancy was estimated fromthe experinental heat
transfer data of Hall and Price (1970) discussed above. The initial de-
crease in heat transfer for assisting conditions as the forced convection
velocity is increased is predicted by the nodel if the adjustable constant
is correctly chosen. However, due to the sparsity of data, no systematic
attenpt to determine the behavior of the constant has been perforned, and
mean velocity and tenperature profile conparisons were not perforned.
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A nunber of other investigators have used the mixing length eddy vis-
cosity approach for nixed convection for forced convection dom nated situa-
tions. Mbdels devel oped include those by Chen, Armaly, and Ali (1987),

Pl unb and Evans (1983), and Nakajim, et al. (1980). The mxing |length
used in these nodels is very simlar to that devel oped by Cebeci and Smith
(1974) which was used by Cebeci and Rhattab (1975) for pure natural convec-
tion flow

Recently, a nunber of investigators have used two-equation eddy vis-
cosity (k-c) models to analyze mixed convection. For exanple, Pietrzyk and
Crawford (1985), Arnaly, Ramachandran, and Chen (1986), and Cotton and
Jackson (1987) used this nodel to investigate turbulent m xed convection
predom nantly for the effect of buoyancy assisting conditions on forced
convection dom nated problens.

3. Local Sinilarity Mdel

Vel ocity and tenperature profile data for m xed convection conditions
dom nated by natural convection are not available at the present tine. In
addi tion, nost of the turbulent m xed convection nodels are for forced
convection dominated nixed convection. No nodel has been fully devel oped
for buoyancy dom nated turbul ent m xed convection, although the approach
proposed by Costhuiien (1974) is encouraging. In the absence of applicable
data and nodels, the current turbul ence nodel discussed earlier with the ad
hoc mixed convection nodifications for lamnar flow will be enployed.

For application to mxed convection, the displacenment boundary |ayer
t hi ckness, 6*, has to be redefined. The original definition,

* U
§ = I - dy (51)
0 max

is not adequate since the value of 6* will continue to change since u does
not go to zero at infinity. For assisted mxed convection, a reasonable
definition would be the integral of
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§ - | ——— dy. (86)

This definition is also reasonable for opposed nixed convection with uni-
directional flow, although this definition has not been used in the present
study since application to SPR is only concerned with opposed mxed con-
vection conditions with flow reversal. For flow reversal conditions, the
following definition is used

y(u=0.)

" - | —— ay. (87)
max

Thus, only the portion of the boundary layer with positive velocity val ues
is considered for evaluation of the displacenent thickness.

A nurmber of questions renain to be answered about the applicability of
the turbul ent natural convection boundary |ayer thickness nodel to nixed
convection. The scaling used as well as the constant of 2.5 may not be
appropriate for nixed convection conditions. However, since the appli-
cation of the present nodel is to natural convection dom nated conditions,
the boundary |ayer thickness nodel should be reasonable. At the present
time, no data are available to evaluate this question.

C. Overal

M xed convection conditions dom nated by natural convection or buoyancy
forces have generally not been investigated for |amnar or turbulent flow
conditions. \While sone velocity profile data for lanminar flow are
avai |l abl e for assisted mixed convection, no flow reversal opposed nixed
convection data in the buoyancy dominated regine are available. For
turbul ent conditions, no buoyancy doninated velocity profile data are
avail abl e under any conditions.

For lami nar mi xed convection, a local simlarity nodel based on the
natural convection simlarity equations has been devel oped and conpared to
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the limted available data. The data-nodel conparison was surprisingly
good in light of the ad hoc nodifications. For turbulent conditions, no
data are available, and nodifications to the turbul ence nodel proposed
earlier were developed but could not be tested due to the lack of data

In calculating the velocity profiles for nixed convection, the end
point, no, was often large. In the nunerical calculations, the results for
| arge values of the end point are sensitive to the initial guesses. Sore-
times two different solutions were produced as depicted in Figure 43 de-
pending on the initial assuned profile. However, after considering the
converged solutions, only one is appropriate based on satisfaction of al
the desired boundary conditions. In Figure 43, the top curve is obviously
the preferred solution since the bottom curve does not have a negligible
sl ope at the end point, 7.
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V. Summmarv_and Concl usi ons

The SPR cavern fluid velocity nodel for natural convection (Wbb
(1988a)) is based on the local sinilarity approach as inplenented in the
Modified Local Sinilarity (MS) method (Webb (1988b)). In this applica-
tion, the local simlarity equations are based on the natural convection
simlarity variables. Provisions for turbulent flow and mi xed convection
conditions nmust be included in the local simlarity fornulation for
application to the conditions encountered in SPR caverns.

In the devel opnent of these nmpdels, the traditional shooting nethod
enpl oyed to solve the local sinmlarity equations was unreliable. There-
fore, a finite difference nmethod based on the Box schene was devel oped to
solve the equations. This new approach was found to be reliable and robust
in this application.

In order to satisfy the local similarity requirenment, an appropriate
turbul ence nodel had to be devel oped. The one existing turbul ence nodel
that is applicable to the local simlarity approach gave unsatisfactory
results. Therefore, another turbul ence nodel was nodified to conformto
the local simlarity requirenments. Conparison of this nodel to turbul ent
velocity profile data gave reasonable to good results.

Application of the natural convection local simlarity equations to
m xed convection conditions, which is required in the present case, had not
previously been done. Ad hoc nodifications were nmade to the local simi-
larity equations in order to satisfy the required boundary conditions.
Dat a- nodel conparisons for the velocity and tenperature profiles in |am nar
flow show surprisingly good results, especially for buoyancy doninated con-
ditions. Tur bul ent dat a- rodel conparisons could not be perfornmed due to
the lack of experinmental data.

The full local simlarity equation set including turbulence and ni xed
convection effects is

v et [ '2 '2
L+ ==f ) + (3EF - 2(n+1)[f -Ahf, +6=0 (88)
((1_+ﬁ_1_) 8) + (n+3)f6 -4n £ 8 -J(f'- £)=0  (89)
Pr v Pr @

t
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where the turbul ence nodel is the local simlarity nodified Cebeci and
Khattab nodel developed in this report, or

2, du
e Uy | (36)
- - - i i 38
1, = 0.4y (1 - exp(-y/A)) (i nner region) (38)
10 = 0.075 6 (outer region) (39)
1 = min(li,lo) (40)
A= 26v (rw/p)'l/2 (41)
6=2.56". (76)
y(u=0.)
N (87)
0 nmax

The integrated conservation equations, which are necessary for the
eval uation of nmomentum and energy conservation in the calculated profiles
as discussed in Section Il, are

Moment um

Yo Neo o
’ 2 t [
(5+3n) Jf dn = Je dn - £ - 2(n+l) f* + (n#3) £ Jf' dn  (90)

0 0 0

! w ’ [
(5n + 3) J £ 6dn=- 55— -1 J £ dn - £ n (91)
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wher e

* ’2
£ o=f_ | mu=0) - | n_ - nu=0) || (92)

The first termin £* is the portion of n that f' and fo are opposite each
other, while the second termis when they are in the same direction. Not e
that the above momentum conservation equation is only applicable to opposed
m xed convection with flow reversal or to pure natural convection.

The nodel s developed in this report allow the application of the
natural convection local simlarity approach to SPR caverns. Comparison of
the results of each of these nodels to the avail able data show reasonabl e
to good results, although developrment and full testing of these npdels has
been hanpered by the | ack of applicable data. The use of these nodels in
the SPR fluid velocity nodel has been shown by Wbb (1988a) to provide good
results for the limted available data for velocity and tenperature
profiles is enclosures.

In conclusion, the applicability of the local sinilarity approach to
turbul ent and mi xed convection conditions has been extended by the present
i nvestigation. Further devel opnent and eval uation of these nodels is
continuing such as the inclusion of buoyancy in the eddy viscosity
expressi on. However, verification of the nodels for conditions encountered
in an SPR cavern nust await the availability of additional applicable
experimental data.
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VI. Nonenclature

A,B coefficients in Cebeci and Khattab node

Cy k-c nodel coefficient

E error

f stream function natural convection similarity variable
F stream function forced convection sinmilarity variable
g gravitational constant

G G ashof numnber

J fluid tenperature stratification simlarity variable
k turbul ent Kkinetic energy

1 m xi ng | ength

1, additional Prandtl nixing |ength

q" heat fl ux

N temperature difference constant

Nu  Nusselt nunber

Pr Prandt| nunber

Ra  Rayleigh nunber

Re, effective Reynolds nunber

Ri Ri chardson nunber

Ri, gradient R chardson nunber

T tenperature

AT  tenperature difference

u x-direction velocity

u*  dinensionless velocity in Popov and Yan' kov nodel
u* characteristic velocity, = 2(g B x AT)1/2

U friction velocity, = (r,/p)/?

U, reference velocity

Ut di mensi onl ess velocity, = u/u.

v y-direction velocity

X distance along plate surface

Y distance normal to plate surface
y* dinmensionless distance, = u.y/v
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Greek

a thermal diffusivity

B coefficient of thermal expansion

s boundary | ayer thickness

612 value of 6 where u = 0.5 up,,

€ turbul ent energy dissipation paraneter

¢ di mensi onl ess coordinate, = (y/x) Nu

n simlarity dinensionless coordinate

ny constant in Popov and Yan' kov nodel

§ simlarity dinensionless tenperature

K m xi ng | ength constant

A m xed convection variable

v ki nematic viscosity

I3 di mensi onl ess paraneter for mxed convection

p density

T shear stress

T shear stress, = u(8u/dy).

¥ stream function

¥ variabl e in Popov and Yan' kov nodel
Subscripts

f fluid

i i nner

max maxi mum

) out er

t t ur bul ent

w wal

X val ue at x

0 as R -0

o val ue at edge of boundary layer; as Ri = o

Superscripts

*

mesh point indice

derivative with respect to g
constant heat flux value
average val ue
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Appendix A

Development of Eddv Viscosity Conservation Eauations

The basic conservation equations for natural convection given in the
Introduction are for lamnar flow conditions. For turbulent flow addi-
tional stresses are produced by turbul ence that nodify the behavior of the
fluid. The velocity and tenperature values can be witten as the sum of
nmean and fluctuating val ues, or

u(t) = u + u’ (A-1)
v({t) = v + v’ (A-2)
T(t) =T+ T (A-3)

where the fluctuations around the nmean values are due to turbul ence

Assuming small fluctuations, the steady-state turbulent natural convection
equations can then be witten as:

mass

Jdu av
Mo (A-4)

X-nonment um

du Ju a du r
u3X+v6y - g B (T - Tf(x)) +'a—y {Vg; - uv] (A-5)
ener gy
aT aT a aT ‘!
uax+vay - 5;[ E-UT] (A-6)

where the standard Boussi nesq approximations for natural convection have
been used. The influence of turbulence in the above equations is due to
the fluctuating velocities and tenperatures. |f the fluctuations are zero
the above equations reduce to the lamnar form given earlier.

A-1



In order to solve the above equations, closure relationships are needed
for the average of the fluctuation terms to conplete the equation set.
Turbul ent cl osure nodels are concerned with predicting the quantities

According to Yang and Aung (1985), two approaches are generally used for
the closure equations for the stress - the Boussinesq eddy viscosity
approach and the stress model.

The Boussinesq eddy wviscosity approach assumes that the eddy viscosity
parameter is a scalar, inplying an isotropic eddy viscosity, and the
closure relationship for the velocity fluctuation termis

s 3
-uv = Ut [—E + av) (A-D

ay ax)

Maki ng use of the boundary |ayer behavior that du/dy >> 3v/8x, the equation
reduces to

' du

-uv o o=v 3y - (A-8)

For the velocity-tenperature relationship, the turbulent heat flux is
assuned to vary like Fourier's law, or

o 3T

at 5; . (A-9)

The ratio of the two turbul ence parameters is the turbul ent Prandt| nunber
Pr,, or

v
Pr = _t
t at

(A-10)

inline with the definition of the nolecular Prandtl nunber



1%
Pro-2 (A-11)

The conservation equations for an eddy viscosity turbul ence nodel are

nmass
du av
Frig 3y =0 (A-12)
X-nonment um
du du d du
u 5 + v 3y = g B (T - Tf(x)) + 3y [(y.+ Ve ay] (A-13)
ener gy
aT . 3T _ a 3T _
UtV 3y ~ 3y [a + at) ay] (A-14)

where the closure equations for v, and a, have to be defined. Models for
v, and Pry (=v./a,) are discussed in the nmain report.

In contrast to the eddy viscosity approach, the stress nodels for
cl osure solve transport PDEs for the fluctuation products instead of the
al gebrai ¢ equations discussed above in the Boussinesq eddy viscosity
method. The turbulent stress is calculated as a tensor instead of as a
scal ar thereby relaxing the isotropic assunption nmade in the Bnussinesq
eddy viscosity nodel. Note that some results from stress nodels are
presented in the main report. More'advanced nodel s such as |arge eddy
simulation and the vortex nodel are also being devel oped. These nore
advanced techniques, as well as the stress nodels, are not within the scope
of the present study due to their prohibitive conputational requirenents.
Information on these other approaches is given by Yang and Aung (1985) and
is not included here



Appendix B

Probl ens of the M xing Length Approach

A problemwith the eddy viscosity nodel is that the turbulent transport
of momentum and energy, as characterized by vy and Pr,, is zero at a velo-
city nmaxi mum or nininmum since du/dy = 0 as shown by the general expression

! du
-V, 7y (B-1)
This problemoccurs for the zero-, one-, and two-equation nodels. However,
the problemis further compounded for the zero-equation nodels since the

eddy viscosity is also proportional to 8u/dy, or

- Yv'-u§E=1-—a—u
v t 3y ay

du
5;. (B-2)

In many cases, the velocity maximumor mnimumis |located in a region
of symmetry where net nonmentum or energy transfer is mnimum such as in
the center of a pipe or the center of a symetrical wake or jet. In these
cases, this problem with the mxing length forrmulation should not signifi-
cantly effect the nmean velocity or tenmperature profiles for symetrical
boundary conditions. Work in this area has been reported by Schlichting
(1968) for free turbulent jets and wakes. Differences between results
usi ng the conventional expression and those nodified to account for the
du/3y = 0. problemdiffer little fromeach other for the above cases.

The mi xing length eddy viscosity drawback, however, nmay be significant
for asymetrical cases, such as flow in a channel with the walls at two

different tenperatures. In this case, the turbulent transport predicted by
a mxing length nodel across the channel will be miniml due to the velo-
city maximum in the nmiddle of the channel. Prandtl recognized this draw

back of his mixing |l ength fornmulation and proposed the follow ng nodifi-
cation (see Doshi and Gl (1970))

B-1



2 9 2
12 du 1 |du
dy dy

where the mixing length 1 is an additional variable that is determ ned by
data. By the nature of this nodification, two separate mixing |engths have
to be determined, and this form has not often been used. Note, however,
that since the turbulent stress termis still proportional to the mean
velocity gradient, the problemof zero turbulent transport at a velocity

m ni mum or maxi num still exists.

In order to overcome this problemof two mixing lengths and the zero
turbulent transport at velocity mninmms and- maxi muns, Doshi and G|
(1970,1971) reformul ated the nmixing length and resultant turbulent trans-
port expressions in ternms of the first and second velocity derivatives with
a single nixing length, 1, equal to the standard value. Thus, they elim-
nated the extra mxing length variable, 1;, so standard expressions are
still applicable, and the mxing length and turbulent transport are nonzero
at or near velocity maximms and m ni nuns.

The Doshi and G || expressions are

2
B U el s
T y 1 dy dy (B-4)
-uv -~ 2
1 d251 12 a%u |1g
L % ey - -ay?|? dy

This formul ati on overcomes a significant problemw th the application
of the standard mixing length eddy viscosity approach. The results from
the standard mixing | ength nmodel and the Doshi and G Il nmodification are
shown in Figure B-1 for a channel with two different wall tenperatures.
For the standard mixing length nodel, the tenperature predictions are poor
in the mddle of the channel since the velocity gradient is small. The
Doshi and G| predictions agree much better with the experinmental datain
this low velocity gradient region.
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Figure B-1. Effect of Doshi and G Il (1970,1971) nodel on tenperature
distribution in a two tenperature channel (Doshi and G|
(1971)).
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The inportance of the zero slope problemin zero-equation nodels for
natural convection can be assessed frominformation presented in Figure B-2
from Henkes and Hoogendoorn (1989b) . The eddy viscosity for the zero-
equation nodel of Cebeci and Khattab (called Cebeci and Snith in the
figure) and for the two-equation nodels studied are not significantly
different around the velocity peak, which occurs around ¢ = 1 as shown in
Figure 24 of the main report. The eddy viscosity at the velocity peak is
al so significantly below the values in the outer region of the boundary
layer, so the velocity profile will be controlled by the outer region
value. The major difference between the zero- and two-equation models is
in the outer region of the boundary layer. Therefore, the mixing length
problem at the velocity peak is not expected to be significant for natura
convection conditions, and the nmixing |ength modifications di scussed above
have not been enpl oyed
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Appendix C

Turbul ent Data Reduction Procedure

In the data-npdel conparisons presented in the main report for
turbul ence, the existing data often had to be nodified from the original
presentation. Al the data-nodel conparisons are presented in this report
interns of the laminar sinmlarity velocity and di stance coordinates for
simplicity and to allow direct conparison with |amnar results. The
laminar simlarity variables are

f wvs. 1n
wher e
' X u
f = u = (C-1)
2v Gri/2 2 (g B x A'I‘)l/2
er 1/4
el €2

The data reduction procedure to allow this conparison, including any
assunptions, is given in this appendix. Each data set is treated
i ndependently since the technique is dependent on the form of the original
data presentation as well as any additional available infornation.

The method for the following data sets will be presented in order.

Cheesewri ght (1968).

Lock and Trotter (1968).

Viiet and Liu (1969).

Kut at el adze, et al. (1972).
Hoogendoorn and Euser (1978).
Cheesewright and lerokiopitis (1982).
Myanoto, et al. (1982).

Tsuji and Nagano (1988).

© N ok wh e
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Cheesewright

As shown in Figure 4 in the main report, the Cheesewight (1968)
velocity data are presented in ternms of

—P-; VS. X Gro'l.
u X

The velocity variable is sinply equal to 2f' since the u* value used by
Cheesewright is the present definition divided by 2. The distance variable
is the lanminar variable with a different power on the G ashof nunber. The
G ashof number is given in Figure 5, and the conversion is easily made.
The Prandt! nunber was assumed to be 0.72 in the data-nodel conparisons.

Lock and Trotter

The Lock and Trotter (1968) data shown in Figure 9 of the main report
are in terms of

where U is equal to f' and y is in the unusual units of 0.1 inches. Thus,
ay value of 2.0 corresponds to a physical distance of 0.2 inches. The

hi ghest Grashof nunber data presented with sufficient information are used.
The appropriate G ashof and Prandtl numbers as well as the x distance are
6.66 x 108, 10.25, and 10.8 inches, respectively. These data are suffi-
cient for the data-nodel conparison results.

Viiet and Liu

Figure 10a in the nain report shows the velocity data which are in
terns of the variables
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and ug,, and §* are defined in the figure as is the Rayleigh nunber Ra*.
Figure 10b for the tenperature profile defines the Ra nunber for the data.
Based on information in the text, the x distance for the two profiles is 30
and 42 inches with the |ower distance corresponding to the | ower Rayleigh
nunmber. These distances are the same as used by Mason and Seban (1974)

The Prandt! nunber used in the simlarity analysis is assuned to be equa

to 6.0 in accordance with the Prandtl number range of 5-7. A viscosity (v)
of 0.945 x 1075 ft2/sec i s used for consistency with the assumed Prandt
nunber based on data in Kreith (1965). The resulting Gashof nunbers are
1.9 x 1010 and 6.0 x 10 for the two velocity profiles.

Kut at el adze

The ethyl alcohol (ethanol) velocity data of Kutateladze, et al. (1972)
shown in Figure 12 of the main report are reported in terns of

The Prandtl nunber is reported to be 13.2. Rayleigh nunber, x, AT, and T
information is presented in the figure caption in the reference. The only
unknown in transformng the data to the desired simlarity coordinates is
B, the volunetric expansion coefficient. This value has been cal cul at ed
frominformation given by Wlhoit and Zwolinski (1973) as approximtely 1.1
X 103 1/°C (6.1 x 10-4 1/°F) for the reported tenperatures.

Hooeendoorn _and Euser

The Hoogendoorn and Euser (1978) data were shown in Figure 6 of the
main report in terns of

—2; VS. - A Gro'1
u X

just like the original Cheesewight data presentation. The velocity coor-
dinate is sinply 2f’, while conversion for the y coordinate is sinply
dependent on the Grashof nunber. Using an average Rayleigh nunber fromthe
data given on the figure and an assumed Prandt| nunmber of 0.72, the G ashof
nunber is 9.5 x 109,



Cheesewri eht and Ierokiopitis

Cheesewright and lerokiopitis (1982) give velocity data in terns of
vel ocity and distance as shown in Figure 8 of the main report, or

u vs .

Information in the reference gives the x distance as 2.2 mand the
G ashof nunber as 4.83 x 1019, and the plate tenperature is approxi mately
80°C (176°F). Based on the data reported by To and Hunmphrey (1986), t he
tenmperature difference between the plate and the environnent was 56°C
(101°F), so the environnmental tenperature is 24°C (75°F). These val ues
allow the cal culation of u* assumng f=1/T, and the translation of y to 5.
The Prandtl number was assuned equal to 0.72.

Note that the data attributed to Cheesewight and lerokiopitis (1982)
by To and Hunphrey (1986) are not in the original reference. To and Hunmph-
rey cite the Grashof nunber of 5.75 x 101° which is not given in the refer-
ence. Perhaps these data are given in a nore detailed report on the data.
At the present time, the origin of these data is not known and the presen-
tation made by To and Hunmphrey will not be used for data-nopdel conparison
pur poses.

M vanot o

Figure 13a shows the Myanmoto, et al. (1982) velocity data in terns of

The turbulent regime is quoted as being for GriPr val ues greater than
1.5 x 1013, Assuming a Prandt| number of 0.72, only two velocity profiles
are clearly in the turbulent regime with Gr} values of 6.68 x 1013 and 1. 06
X 101, To convert the Gry values to G,, the Nusselt nunber correlation
presented by Myanoto, et al. (1982) for turbulent flow



*
Nu_ =~ 0.104 (erPr)O' 212 (G3)

was used. The resulting Grashof nunbers are 1.22 x 101 and 1.71 x 1011,
This information was al so used to convert the (y/x)Nu coordinate to n
val ues.

To convert the velocity data to f' simlarity values, the correlation
plotted for the maximum velocity variation

uo % ,0.288
-10.9 G _ (G 4)

was used. Using the simlarity relationship

' u X 1

f = (G5)
v 2 Gr1/2

X
results in
*0.288

u 10.9 er

f' = (C-6)
umalx 2 Gri/2

which gives the value of f' directly since the Gashof nunbers are known.

Tsuii _and Nagano

The velocity data of Tsuji and Nagano (1988) in Figure 14b of the main
report are in ternms of

u+ vs. y+



wher e

L AN (G7)
y' - wy/v (C-8)
u, = (r /02 (c-9)

and, for the turbulent experinental data,

1/11.9 U2

. . (G 10)

Tw/p = 0.684 Gr

wher e

/3

v, - (g B AT vyt (C11)

Since the fluid is air, B is evaluated from1l/Te, and the value of v is
equal to 1.60 x 10°* ftZ2/sec as given by Kreith (1965) for the reported
environmental tenperature 16°C (61°F). The tenperature difference of 44°C
(79°F) was also used to calculate U,. The assumed Prandt|l nunmber is 0.72
for the data-nmodel conparisons.
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